This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Related tags

Deep Learningmvp
Overview

Mixture of Volumetric Primitives -- Training and Evaluation

This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models.

If you use Mixture of Volumetric Primitives in your research, please cite:
Mixture of Volumetric Primitives for Efficient Neural Rendering
Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh, Jason Saragih
ACM Transactions on Graphics (SIGGRAPH 2021) 40, 4. Article 59

@article{Lombardi21,
author = {Lombardi, Stephen and Simon, Tomas and Schwartz, Gabriel and Zollhoefer, Michael and Sheikh, Yaser and Saragih, Jason},
title = {Mixture of Volumetric Primitives for Efficient Neural Rendering},
year = {2021},
issue_date = {August 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {40},
number = {4},
issn = {0730-0301},
url = {https://doi.org/10.1145/3450626.3459863},
doi = {10.1145/3450626.3459863},
journal = {ACM Trans. Graph.},
month = {jul},
articleno = {59},
numpages = {13},
keywords = {neural rendering}
}

Requirements

  • Python (3.8+)
    • PyTorch
    • NumPy
    • SciPy
    • Pillow
    • OpenCV
  • ffmpeg (in $PATH to render videos)
  • CUDA 10 or higher

Building

The repository contains two CUDA PyTorch extensions. To build, cd to each directory and use make:

cd extensions/mvpraymarcher
make
cd -
cd extensions/utils
make

How to Use

There are two main scripts in the root directory: train.py and render.py. The scripts take a configuration file for the experiment that defines the dataset used and the options for the model (e.g., the type of decoder that is used).

Download the latest release on Github to get the experiments directory.

To train the model:

python train.py experiments/dryice1/experiment1/config.py

To render a video of a trained model:

python render.py experiments/dryice1/experiment1/config.py

See ARCHITECTURE.md for more details.

Training Data

See the latest Github release for data.

Using your own Data

Implement your own Dataset class to return images and camera parameters. An example is given in data.multiviewvideo. A dataset class will need to return camera pose parameters, image data, and tracked mesh data.

How to Extend

See ARCHITECTURE.md

License

See the LICENSE file for details.

Comments
  • ModuleNotFoundError: No module named 'utilslib'

    ModuleNotFoundError: No module named 'utilslib'

    Hi , thanks for share with this awsome job , have nice day:-) When I just want to render the demo in the experiment data ,I got this error :-) By the way ,I have compiled the extension file 2022-07-06 23-31-21 的屏幕截图

    opened by Myzhencai 9
  • build success, but cannot run

    build success, but cannot run

    Traceback (most recent call last):
      File "render.py", line 118, in <module>
        output, _ = ae(
      File "/home/an/anaconda3/envs/py38-t19/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1186, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/an/an_project/mvp/models/volumetric.py", line 286, in forward
        rayrgba, rmlosses = self.raymarcher(raypos, raydir, tminmax,
      File "/home/an/anaconda3/envs/py38-t19/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1186, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/an/an_project/mvp/models/raymarchers/mvpraymarcher.py", line 32, in forward
        rayrgba = mvpraymarch(raypos, raydir, dt, tminmax,
      File "/home/an/an_project/mvp/extensions/mvpraymarch/mvpraymarch.py", line 273, in mvpraymarch
        out = MVPRaymarch.apply(raypos, raydir, stepsize, tminmax,
      File "/home/an/an_project/mvp/extensions/mvpraymarch/mvpraymarch.py", line 119, in forward
        sortedobjid, nodechildren, nodeaabb = build_accel(primtransfin,
      File "/home/an/an_project/mvp/extensions/mvpraymarch/mvpraymarch.py", line 44, in build_accel
        sortedobjid = (torch.arange(N*K, dtype=torch.int32, device=dev) % K).view(N, K)
    RuntimeError: CUDA error: no kernel image is available for execution on the device
    
    

    use: python 3.8.13 pytorch 1.13.0a0+git4503c45 cuda 11.3.0 gcc version 8.4.0


    Hi, are you having similar issues?
    pytorch is working normally.

    opened by AN-ZE 8
  • What's basetransf matrix used for?

    What's basetransf matrix used for?

    Hi, I have a little question when I apply my own data using this code. What's the self.basetransf matrix used for as in multiviewvideo.py do? I find this 3x4 matrix is applied for all camera poses and all the frametransf, but wht's the purpose for it? :)

    https://github.com/facebookresearch/mvp/blob/d758f53662e79d7fec885f4dd1a3ee457f7c4b00/data/multiviewvideo.py#L410-L415

    https://github.com/facebookresearch/mvp/blob/d758f53662e79d7fec885f4dd1a3ee457f7c4b00/data/multiviewvideo.py#L385-L387

    Besides, I find it necessary to apply this basetransf, because when I change it to an eyes matrix, it didn't converge during training. So how to get my own basetransf?

    Your answer will help me a lot! Thank you!

    opened by Qingcsai 5
  • Background image uesed in Lombardi‘s MVP not be found in multiface dataset

    Background image uesed in Lombardi‘s MVP not be found in multiface dataset

    Multiface dataset has been used in "Mixture of Volumetric Primitives for Efficient Neural Rendering". The "mvp" onfig file needs the path to the background image. But I can't find the background image in multiface dataset. The code in config file is: bgpath = os.path.join(imagepathbase, 'bg', image', 'cam{cam}', 'image0000.png').

    opened by shuishiwojiade 2
  • Can not build the cuda pytorch extension

    Can not build the cuda pytorch extension

    May I know what pytorch version and cuda version are used to build the two CUDA PyTorch extensions? I was using pytorch 1.7.1, cuda 10.1 and gcc 5.5.0, but I got the error "torch/utils/cpp_extension.py", line 445, in unix_wrap_ninja_compile post_cflags = extra_postargs['cxx'] KeyError: 'cxx' when I tried to build the two CUDA PyTorch extensions. Any suggestions on how to solve the problem?

    opened by ZhaoyangLyu 2
  • Bug Report: mvp/extensions/mvpraymarch/bvh.cu error: too many initializer values

    Bug Report: mvp/extensions/mvpraymarch/bvh.cu error: too many initializer values

    Hi, I meet a bug after cd to extensions/mvpraymarch and run "make" command. Could someone kindly help me to solve the problem?

    I use a remote server with: gcc (Ubuntu 7.5.0-3ubuntu1~16.04) 7.5.0, g++ (Ubuntu 7.5.0-3ubuntu1~16.04) 7.5.0, GNU Make 4.1, Ubuntu 16.04.7 LTS, Python 3.9.12, nvcc 10.2.

    The bug is from pointer assignment as shown in the screenshot. K

    Below is the output message after run "make" command in extensions/mvpraymarch directory:

    python setup.py build_ext --inplace CUDA_HOME: /data/hzhangcc/cuda-10.2 CUDNN_HOME: None running build_ext building 'mvpraymarchlib' extension Emitting ninja build file /data/hzhangcc/mvp/extensions/mvpraymarch/build/temp.linux-x86_64-3.9/build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/2] /data/hzhangcc/cuda-10.2/bin/nvcc -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/TH -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/THC -I/data/hzhangcc/cuda-10.2/include -I/data/hzhangcc/anaconda3/include/python3.9 -c -c /data/hzhangcc/mvp/extensions/mvpraymarch/bvh.cu -o /data/hzhangcc/mvp/extensions/mvpraymarch/build/temp.linux-x86_64-3.9/bvh.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -use_fast_math -arch=sm_70 -std=c++14 -lineinfo -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="gcc"' '-DPYBIND11_STDLIB="libstdcpp"' '-DPYBIND11_BUILD_ABI="cxxabi1011"' -DTORCH_EXTENSION_NAME=mvpraymarchlib -D_GLIBCXX_USE_CXX11_ABI=0 FAILED: /data/hzhangcc/mvp/extensions/mvpraymarch/build/temp.linux-x86_64-3.9/bvh.o /data/hzhangcc/cuda-10.2/bin/nvcc -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/TH -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/THC -I/data/hzhangcc/cuda-10.2/include -I/data/hzhangcc/anaconda3/include/python3.9 -c -c /data/hzhangcc/mvp/extensions/mvpraymarch/bvh.cu -o /data/hzhangcc/mvp/extensions/mvpraymarch/build/temp.linux-x86_64-3.9/bvh.o -D__CUDA_NO_HALF_OPERATORS -D__CUDA_NO_HALF_CONVERSIONS_ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -use_fast_math -arch=sm_70 -std=c++14 -lineinfo -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=mvpraymarchlib -D_GLIBCXX_USE_CXX11_ABI=0 /data/hzhangcc/mvp/extensions/mvpraymarch/bvh.cu(214): error: too many initializer values

    /data/hzhangcc/mvp/extensions/mvpraymarch/bvh.cu(272): error: too many initializer values

    2 errors detected in the compilation of "/tmp/tmpxft_00003cf1_00000000-6_bvh.cpp1.ii". [2/2] /data/hzhangcc/cuda-10.2/bin/nvcc -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/TH -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/THC -I/data/hzhangcc/cuda-10.2/include -I/data/hzhangcc/anaconda3/include/python3.9 -c -c /data/hzhangcc/mvp/extensions/mvpraymarch/mvpraymarch_kernel.cu -o /data/hzhangcc/mvp/extensions/mvpraymarch/build/temp.linux-x86_64-3.9/mvpraymarch_kernel.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -use_fast_math -arch=sm_70 -std=c++14 -lineinfo -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="gcc"' '-DPYBIND11_STDLIB="libstdcpp"' '-DPYBIND11_BUILD_ABI="cxxabi1011"' -DTORCH_EXTENSION_NAME=mvpraymarchlib -D_GLIBCXX_USE_CXX11_ABI=0 FAILED: /data/hzhangcc/mvp/extensions/mvpraymarch/build/temp.linux-x86_64-3.9/mvpraymarch_kernel.o /data/hzhangcc/cuda-10.2/bin/nvcc -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/TH -I/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/include/THC -I/data/hzhangcc/cuda-10.2/include -I/data/hzhangcc/anaconda3/include/python3.9 -c -c /data/hzhangcc/mvp/extensions/mvpraymarch/mvpraymarch_kernel.cu -o /data/hzhangcc/mvp/extensions/mvpraymarch/build/temp.linux-x86_64-3.9/mvpraymarch_kernel.o -D__CUDA_NO_HALF_OPERATORS -D__CUDA_NO_HALF_CONVERSIONS_ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -use_fast_math -arch=sm_70 -std=c++14 -lineinfo -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=mvpraymarchlib -D_GLIBCXX_USE_CXX11_ABI=0 /data/hzhangcc/mvp/extensions/mvpraymarch/mvpraymarch_kernel.cu(80): error: too many initializer values

    /data/hzhangcc/mvp/extensions/mvpraymarch/mvpraymarch_kernel.cu(87): error: too many initializer values

    /data/hzhangcc/mvp/extensions/mvpraymarch/mvpraymarch_kernel.cu(93): error: too many initializer values

    /data/hzhangcc/mvp/extensions/mvpraymarch/mvpraymarch_kernel.cu(99): error: too many initializer values

    /data/hzhangcc/mvp/extensions/mvpraymarch/mvpraymarch_kernel.cu(167): error: too many initializer values

    /data/hzhangcc/mvp/extensions/mvpraymarch/mvpraymarch_kernel.cu(174): error: too many initializer values

    /data/hzhangcc/mvp/extensions/mvpraymarch/mvpraymarch_kernel.cu(180): error: too many initializer values

    /data/hzhangcc/mvp/extensions/mvpraymarch/mvpraymarch_kernel.cu(186): error: too many initializer values

    /data/hzhangcc/mvp/extensions/mvpraymarch/mvpraymarch_subset_kernel.h(30): warning: variable "validthread" was declared but never referenced

    8 errors detected in the compilation of "/tmp/tmpxft_00003cf2_00000000-6_mvpraymarch_kernel.cpp1.ii". ninja: build stopped: subcommand failed. Traceback (most recent call last): File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 1814, in _run_ninja_build subprocess.run( File "/data/hzhangcc/anaconda3/lib/python3.9/subprocess.py", line 528, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1.

    The above exception was the direct cause of the following exception:

    Traceback (most recent call last): File "/data/hzhangcc/mvp/extensions/mvpraymarch/setup.py", line 13, in setup( File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/init.py", line 87, in setup return distutils.core.setup(**attrs) File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/_distutils/core.py", line 148, in setup return run_commands(dist) File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/_distutils/core.py", line 163, in run_commands dist.run_commands() File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/_distutils/dist.py", line 967, in run_commands self.run_command(cmd) File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/dist.py", line 1214, in run_command super().run_command(command) File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/_distutils/dist.py", line 986, in run_command cmd_obj.run() File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/command/build_ext.py", line 79, in run _build_ext.run(self) File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/Cython/Distutils/old_build_ext.py", line 186, in run _build_ext.build_ext.run(self) File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/_distutils/command/build_ext.py", line 339, in run self.build_extensions() File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 771, in build_extensions build_ext.build_extensions(self) File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/Cython/Distutils/old_build_ext.py", line 195, in build_extensions _build_ext.build_ext.build_extensions(self) File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/_distutils/command/build_ext.py", line 448, in build_extensions self._build_extensions_serial() File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/_distutils/command/build_ext.py", line 473, in _build_extensions_serial self.build_extension(ext) File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/command/build_ext.py", line 202, in build_extension _build_ext.build_extension(self, ext) File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/setuptools/_distutils/command/build_ext.py", line 528, in build_extension objects = self.compiler.compile(sources, File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 592, in unix_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 1493, in _write_ninja_file_and_compile_objects _run_ninja_build( File "/data/hzhangcc/anaconda3/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 1830, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension makefile:2: recipe for target 'all' failed make: *** [all] Error 1

    opened by Wushanfangniuwa 1
  • Traning data for MVP

    Traning data for MVP

    Hi, thank you for sharing your wonderful work! I was able to train the Neural Volume data. I was wondering if the training data for MVP will be released in the near future. Thank you!

    opened by weilunhuang-jhu 1
  • miss files of example?

    miss files of example?

    Hi, I notice there are some discrepancies between the latest release and README.md and mvp/ARCHITECTURE.md. Are there some files of example missing? Such as 'experiments/dryice1/experiment1/config.py' metioned in README.md or 'experiments/example/config.py' metioned in mvp/ARCHITECTURE.md? I follow the steps in README.md but can not train or render the model.

    opened by faneggs 1
  • Training time

    Training time

    Awesome Work! I have been a huge fan of your works since Neural Volumes. This work also seems very interesting!

    How long does it take for training?

    Thank you!

    opened by yeong5366 1
  • render .py not exporting the images for

    render .py not exporting the images for "render_rotate.mp4"

    Hi, thank you for sharing your great work! I'm trying it work the repository's code of the "neuralvolumes" and "mvp" of your great works with each experiments data you provided. "neuralvolumes" worked well! Thank you!! I was able to exec train.py and render.py of the "NeuralVolume" code of your previous work,and could get the images sequence of "prog_XXXXXX.jpg" and "render_rotate.mp4" movie file. Then I'm trying it work "mvp" at the same emvironment,and I did success to work train.py and could get the images sequence of "prog_XXXXXX.jpg".And "log.txt","optimparams.pt","aeparams.pt" file too. But I'm trying exec render.py,the image sequence files of consisting for "render_rotate.mp4" are not exported at /tmp/xxxxxxxxxx/ directory.

    The error message is [image2 @ 0x56400177b780] Could find no file with path '/tmp/5613023327/%06d.png' and index in the range 0-4 /tmp/5613023327/%06d.png: No such file or directory

    Do you have any information about this error?

    My environment is ubuntu20.04LTS, Python 3.8.13, GCC 9.4.0, PyTorch 1.10.1+cu113,GPU_A6000. The setup.py has been fixed about cuda arch at the mvpraymarch and the utils directory.

    opened by ppponpon 3
  • Understanding about the opacity fade factor

    Understanding about the opacity fade factor

    Thanks for sharing this awsome job. I have read the paper. And I have some questions about the opacity fade factor.

    1. Due to the fade factor, the opacity downsample at the volume edge. Does it make the primitives scale become bigger to cover the scene?(maybe opposite to the Volume Minimization Prior)
    2. Is there any experiments to ensure the parameters $\alpha$ and $\beta$?
    3. Does the fade factor make the center of the primitives more close to high occupancy point?
    4. And what is the relationship between stylegan2 and fade factor?

    And is there any suggestions to understand the cuda code of raymarching? I haven't do anything rely to cuda parallel.

    opened by LSQsjtu 0
  •  How you can reconstruct the mesh from images with different views

    How you can reconstruct the mesh from images with different views

    Hi, I noticed that the multi-view images of different frames of the same expression with the same id in your dataset have fixed camera parameters when reconstructing the mesh. When I try to perform mesh reconstruction from multi-view images, the camera parameters obtained from multi-view image reconstruction from different frames are all different. I was wondering how you fixed the camera parameters for mesh reconstruction.

    opened by LiTian0215 1
  • Cannot replicate experiments/neuralvolumes results: Completely vague output and vanishing kldiv

    Cannot replicate experiments/neuralvolumes results: Completely vague output and vanishing kldiv

    Hi, could someone kindly help me? I cannot replicate the output results in experiments/neuralvolumes. I have successfully built the extension and download the experiment.zip in the latest release. However, the output images are completely vague. I found that my kldiv term is quickly vanishing to 0, while in the example log.txt file given in experiment.zip, the kldiv terms remain larger than 0.3.

    Below are my outputs after 79579, 92139, and 106682 iterations. prog_079579 prog_092139 prog_106682

    Here I append my log.txt file which contains my configuration information and training statistics: log.txt

    I'm not sure where is the problem. Incorrect camera pose? Or the code in this repository has some bugs. Really hope some kind guy could help me. Thanks! :)

    opened by Wushanfangniuwa 2
  • About how is the tracking mesh built?

    About how is the tracking mesh built?

    Hello, I have a new problem: I am trying to use the video data of my head to reconstruct mesh and texture as the input and supervision of the network. I am trying to use colmap to reconstruct the point cloud and retargeting it to a public model with 7306 vertices; But the effect is very poor. Is there any method to build mesh for reference?

    opened by Luh1124 6
Releases(v0.1)
  • v0.1(Jan 6, 2022)

    This is an initial release of the Mixture of Volumetric Primitives code. This release includes code for training, rendering, and evaluation. Bundled with this release is a pretrained MVP model. Note that training data for MVP is not included with this release, but will be released in the future. To give an example of how to use the training code, training data and a training configuration file for Neural Volumes is included.

    Source code(tar.gz)
    Source code(zip)
    experiments.zip(1069.70 MB)
Owner
Meta Research
Meta Research
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021