Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Overview

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology, LMRL Workshop, NeurIPS 2021. [Workshop] [arXiv]
Richard. J. Chen, Rahul G. Krishnan
@article{chen2022self,
  title={Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology},
  author={Chen, Richard J and Krishnan, Rahul G},
  journal={Learning Meaningful Representations of Life, NeurIPS 2021},
  year={2021}
}
DINO illustration

Summary / Main Findings:

  1. In head-to-head comparison of SimCLR versus DINO, DINO learns more effective pretrained representations for histopathology - likely due to 1) not needing negative samples (histopathology has lots of potential class imbalance), 2) capturing better inductive biases about the part-whole hierarchies of how cells are spatially organized in tissue.
  2. ImageNet features do lag behind SSL methods (in terms of data-efficiency), but are better than you think on patch/slide-level tasks. Transfer learning with ImageNet features (from a truncated ResNet-50 after 3rd residual block) gives very decent performance using the CLAM package.
  3. SSL may help mitigate domain shift from site-specific H&E stainining protocols. With vanilla data augmentations, global structure of morphological subtypes (within each class) are more well-preserved than ImageNet features via 2D UMAP scatter plots.
  4. Self-supervised ViTs are able to localize cell location quite well w/o any supervision. Our results show that ViTs are able to localize visual concepts in histopathology in introspecting the attention heads.

Updates

Stay tuned for more updates :).

  • TBA: Pretrained SimCLR and DINO models on TCGA-Lung (Larger working paper, in submission).
  • TBA: Pretrained SimCLR and DINO models on TCGA-PanCancer (Larger working paper, in submission).
  • TBA: PEP8-compliance (cleaning and organizing code).
  • 03/04/2022: Reproducible and largely-working codebase that I'm satisfied with and have heavily tested.

Pre-Reqs

We use Git LFS to version-control large files in this repository (e.g. - images, embeddings, checkpoints). After installing, to pull these large files, please run:

git lfs pull

Pretrained Models

SIMCLR and DINO models were trained for 100 epochs using their vanilla training recipes in their respective papers. These models were developed on 2,055,742 patches (256 x 256 resolution at 20X magnification) extracted from diagnostic slides in the TCGA-BRCA dataset, and evaluated via K-NN on patch-level datasets in histopathology.

Note: Results should be taken-in w.r.t. to the size of dataset and duraration of training epochs. Ideally, longer training with larger batch sizes would demonstrate larger gains in SSL performance.

Arch SSL Method Dataset Epochs Dim K-NN Download
ResNet-50 Transfer ImageNet N/A 1024 0.935 N/A
ResNet-50 SimCLR TCGA-BRCA 100 2048 0.938 Backbone
ViT-S/16 DINO TCGA-BRCA 100 384 0.941 Backbone

Data Download + Data Preprocessing

For CRC-100K and BreastPathQ, pre-extracted embeddings are already available and processed in ./embeddings_patch_library. See patch_extraction_utils.py on how these patch datasets were processed.

Additional Datasets + Custom Implementation: This codebase is flexible for feature extraction on a variety of different patch datasets. To extend this work, simply modify patch_extraction_utils.py with a custom Dataset Loader for your dataset. As an example, we include BCSS (results not yet updated in this work).

  • BCSS (v1): You can download the BCSS dataset from the official Grand Challenge link. For this dataset, we manually developed the train and test dataset splits and labels using majority-voting. Reproducibility for the raw BCSS dataset may be not exact, but we include the pre-extracted embeddings of this dataset in ./embeddings_patch_library (denoted as version 1).

Evaluation: K-NN Patch-Level Classification on CRC-100K + BreastPathQ

Run the notebook patch_extraction.ipynb, followed by patch_evaluation.ipynb. The evaluation notebook should run "out-of-the-box" with Git LFS.

table2

Evaluation: Slide-Level Classification on TCGA-BRCA (IDC versus ILC)

Install the CLAM Package, followed by using the 10-fold cross-validation splits made available in ./slide_evaluation/10foldcv_subtype/tcga_brca. Tensorboard train + validation logs can visualized via:

tensorboard --logdir ./slide_evaluation/results/
table1

Visualization: Creating UMAPs

Install umap-learn (can be tricky to install if you have incompatible dependencies), followed by using the following code snippet in patch_extraction_utils.py, and is used in patch_extraction.ipynb to create Figure 4.

UMAP

Visualization: Attention Maps

Attention visualizations (reproducing Figure 3) can be performed via walking through the following notebook at attention_visualization_256.ipynb.

Attention Visualization

Issues

  • Please open new threads or report issues directly (for urgent blockers) to [email protected].
  • Immediate response to minor issues may not be available.

Acknowledgements, License & Usage

  • Part of this work was performed while at Microsoft Research. We thank the BioML group at Microsoft Research New England for their insightful feedback.
  • This work is still under submission in a formal proceeding. Still, if you found our work useful in your research, please consider citing our paper at:
@article{chen2022self,
  title={Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology},
  author={Chen, Richard J and Krishnan, Rahul G},
  journal={Learning Meaningful Representations of Life, NeurIPS 2021},
  year={2021}
}

© This code is made available under the GPLv3 License and is available for non-commercial academic purposes.

Owner
Richard Chen
Ph.D. Candidate at Harvard
Richard Chen
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021