Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Related tags

Deep Learningpgn2tex
Overview

Pgn2Latex (WIP)

A simple script to make pdf from pgn files and studies. It's still work in progress and I hope to improve it in the future. Please feel to reach out or to contribute by submitting issues and pull requests!

Examples

Some examples can be found in the examples/ directory. At the moment there is a book on the Stafford Gambit based on this study and a book of puzzles.

Requirements

Python

pip install -r requirements.txt

Latex

It uses xskak and skak to draw the chessboards. The latex files should be compiled using xelatex.

Usage

Studies

> python pgn2tex/study.py --help
usage: study.py [-h] [--mode {single,study}] [--players] [--template TEMPLATE] [--front-page FRONT_PAGE] [-o OUTPUT] file

Convert a PGN file to a latex document. It is supposed to be used to create book from a study or a single game analysis.

positional arguments:
  file                  PGN File to parse

options:
  -h, --help            show this help message and exit
  --mode {single,study}, -m {single,study}
                        Wether to treat each game independently or as one single large study with several chapters.
  --players, -p         Add player names
  --template TEMPLATE, -t TEMPLATE
                        Template file to use, if none only the latex content is generated with headers / document class, it can be input later on in any latex document.
  --front-page FRONT_PAGE, -f FRONT_PAGE
                        Path to a pdf frontpage
  -o OUTPUT, --output OUTPUT
> python pgn2tex/study.py examples/lichess_study_stafford-gambit_by_wyggam_2020.10.04.pgn --mode study -o examples/stafford.tex --template pgn2tex/templates/book.tex --front-page pgn2tex/templates/frontpage_stafford.pdf
> cd examples
> xelatex stafford.tex
> xelatex stafford.tex # for table of content and cross refs

Puzzles

You first need to download the lichess puzzle database and the themes description, assuming you are in the root directory of the repo:

mkdir -p data 
cd data 
wget https://database.lichess.org/lichess_db_puzzle.csv.bz2 && bzip2 -d lichess_db_puzzle.csv.bz2 
wget https://raw.githubusercontent.com/lichess-org/lila/master/translation/source/puzzleTheme.xml
cd ..

Usage:

usage: puzzles.py [-h] [--problems PROBLEMS]
                  [--theme {advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} [{advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} ...]]
                  [-m MIN_RATING] [-s STEP_SIZE] [-M MAX_RATING] [--template TEMPLATE] [--front-page FRONT_PAGE] [--output OUTPUT]

Generate latex with chess puzzles from the lichess database

options:
  -h, --help            show this help message and exit
  --problems PROBLEMS, -p PROBLEMS
                        Max number of problems to sample in each theme/rating range.
  --theme {advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} [{advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} ...]
                        Name of the themes to be used.
  -m MIN_RATING, --min-rating MIN_RATING
                        Minimum rating of the problems.
  -s STEP_SIZE, --step-size STEP_SIZE
                        Step size from problem ratings
  -M MAX_RATING, --max-rating MAX_RATING
                        Maximum rating of the problems.
  --template TEMPLATE, -t TEMPLATE
                        Template file to use, if none only the latex content is generated with headers / document class, it can be input later on in any latex document.
  --front-page FRONT_PAGE, -f FRONT_PAGE
                        Path to a pdf frontpage
  --output OUTPUT, -o OUTPUT
                        Output file

Example:

python pgn2tex/puzzles.py --template pgn2tex/templates/book.tex --front-page pgn2tex/templates/frontpage_puzzles.pdf  --output examples/puzzles.tex
cd examples
xelatex puzzles.tex
xelatex puzzles.tex # for table of contents

Code formatting

The code is formatted using Black

Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022