PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Overview

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models

This repository will reproduce the main results from our paper:

On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
Erik Nijkamp*, Mitch Hill*, Tian Han, Song-Chun Zhu, and Ying Nian Wu (*equal contributions)
https://arxiv.org/abs/1903.12370
AAAI 2020.

The files train_data.py and train_toy.py are PyTorch-based implementations of Algorithm 1 for image datasets and toy 2D distributions respectively. Both files will measure and plot the diagnostic values $d_{s_t}$ and $r_t$ described in Section 3 during training. The file eval.py will sample from a saved checkpoint using either unadjusted Langevin dynamics or Metropolis-Hastings adjusted Langevin dynamics. We provide an appendix ebm-anatomy-appendix.pdf that contains further practical considerations and empirical observations.

Config Files

The folder config_locker has several JSON files that reproduce different convergent and non-convergent learning outcomes for image datasets and toy distributions. Config files for evaluation of pre-trained networks are also included. The files data_config.json, toy_config.json, and eval_config.json fully explain the parameters for train_data.py, train_toy.py, and eval.py respectively.

Executable Files

To run an experiment with train_data.py, train_toy.py, or eval.py, just specify a name for the experiment folder and the location of the JSON config file:

# directory for experiment results
EXP_DIR = './name_of/new_folder/'
# json file with experiment config
CONFIG_FILE = './path_to/config.json'

before execution.

Other Files

Network structures are located in nets.py. A download function for Oxford Flowers 102 data, plotting functions, and a toy dataset class can be found in utils.py.

Diagnostics

Energy Difference and Langevin Gradient Magnitude: Both image and toy experiments will plot $d_{s_t}$ and $r_t$ (see Section 3) over training along with correlation plots as in Figure 4 (with ACF rather than PACF).

Landscape Plots: Toy experiments will plot the density and log-density (negative energy) for ground-truth, learned energy, and short-run models. Kernel density estimation is used to obtain the short-run density.

Short-Run MCMC Samples: Image data experiments will periodically visualize the short-run MCMC samples. A batch of persistent MCMC samples will also be saved for implementations that use persistent initialization for short-run sampling.

Long-Run MCMC Samples: Image data experiments have the option to obtain long-run MCMC samples during training. When log_longrun is set to true in a data config file, the training implementation will generate long-run MCMC samples at a frequency determined by log_longrun_freq. The appearance of long-run MCMC samples indicates whether the energy function assigns probability mass in realistic regions of the image space.

Pre-trained Networks

A convergent pre-trained network and non-convergent pre-trained network for the Oxford Flowers 102 dataset are available in the Releases section of the repository. The config files eval_flowers_convergent.json and eval_flowers_convergent_mh.json are set up to evaluate flowers_convergent_net.pth. The config file eval_flowers_nonconvergent.json is set up to evaluate flowers_nonconvergent_net.pth.

Contact

Please contact Mitch Hill ([email protected]) or Erik Nijkamp ([email protected]) for any questions.

You might also like...
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

PyTorch implementation of the implicit Q-learning algorithm (IQL)
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

A pytorch reprelication of the model-based reinforcement learning algorithm MBPO
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Comments
  • Step size in Langevin Dynamics

    Step size in Langevin Dynamics

    Hi, in your code, when you do the langevin dynamics, you run x_s_t.data += - f_prime + config['epsilon'] * t.randn_like(x_s_t) However, does this mean that the step size for the gradient f_prim is 1? Should we run x_s_t.data += - 0.5*config['epsilon']**2*f_prime + config['epsilon'] * t.randn_like(x_s_t) instead?

    opened by XavierXiao 1
Releases(v1.0)
Owner
Mitch Hill
Assistant Professor of Statistics and Data Science at UCF
Mitch Hill
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022