Self-Supervised Contrastive Learning of Music Spectrograms

Overview

Self-Supervised Music Analysis

Self-Supervised Contrastive Learning of Music Spectrograms

Dataset

Songs on the Billboard Year End Hot 100 were collected from the years 1960-2020. This list tracks the top songs of the US market for a given calendar year based on aggregating metrics including streaming plays, physical and digital purchases, radio plays, etc. In total the dataset includes 5737 songs, excluding some songs which could not be found and some which are duplicates across multiple years. It’s worth noting that the types of songs that are able to make it onto this sort of list represent a very narrow subset of the overall variety of the US music market, let alone the global music market. So while we can still learn some interesting things from this dataset, we shouldn’t mistake it for being representative of music in general.

Raw audio files were processed into spectrograms using a synchrosqueeze CWT algorithm from the ssqueezepy python library. Some additional cleaning and postprocessing was done and the spectrograms were saved as grayscale images. These images are structured so that the Y axis which spans 256 pixels represents a range of frequencies from 30Hz – 12kHz with a log scale. The X axis represents time with a resolution of 200 pixels per second. Pixel intensity therefore encodes the signal energy at a particular frequency at a moment in time.

The full dataset can be found here: https://www.kaggle.com/tpapp157/billboard-hot-100-19602020-spectrograms

Model and Training

A 30 layer ResNet styled CNN architecture was used as the primary feature extraction network. This was augmented with learned position embeddings along the frequency axis inserted at regular block intervals. Features were learned in a completely self-supervised fashion using Contrastive Learning. Matched pairs were taken as random 256x1024 pixel crops (corresponding to ~5 seconds of audio) from each song with no additional augmentations.

Output feature vectors have 512 channels representing a 64 pixel span (~0.3 seconds of audio).

Results

The entirety of each song was processed via the feature extractor with the resulting song matrix averaged across the song length into a single vector. UMAP is used for visualization and HDBSCAN for cluster extraction producing the following plot:

Each color represents a cluster (numbered 0-16) of similar songs based on the learned features. Immediately we can see a very clear structure in the data, showing the meaningful features have been learned. We can also color the points by year of release:

Points are colored form oldest (dark) to newest (light). As expected, the distribution of music has changed over the last 60 years. This gives us some confidence that the learned features are meaningful but let’s try a more specific test. A gradient boosting regressor model is trained on the learned features to predict the release year of a song.

The model achieves an overall mean absolute error of ~6.2 years. The violin and box plots show the distribution of predictions for songs in each year. This result is surprisingly good considering we wouldn’t expect a model get anywhere near perfect. The plot shows some interesting trends in how the predicted median and overall variance shift from year to year. Notice, for example, the high variance and rapid median shift across the years 1990 to 2000 compared to the decades before and after. This hints at some potential significant changes in the structure of music during this decade. Those with a knowledge of modern musical history probably already have some ideas in mind. Again, it’s worth noting that this dataset represents generically popular music which we would expect to lag behind specific music trends (probably by as much as 5-10 years).

Let’s bring back the 17 clusters that were identified previously and look at the distribution of release years of songs in each cluster. The black grouping labeled -1 captures songs which were not strongly allocated to any particular cluster and is simply included for completeness.

Here again we see some interesting trends of clusters emerging, peaking, and even dying out at various points in time. Aligning with out previous chart, we see four distinct clusters (7, 10, 11, 12) die off in the 90s while two brand new clusters (3, 4) emerge. Other clusters (8, 9, 15), interestingly, span most or all of the time range.

We can also look at the relative allocation of songs to clusters by year to get a better sense of the overall size of each cluster.

Cluster Samples

So what exactly are these clusters? I’ve provided links below to ten representative songs from each cluster so you can make your own qualitative evaluation. Before going further and listening to these songs I want to encourage you loosen your preconceived notions of musical genre. Popular conception of musical genres typically includes non-musical aspects like lyrics, theme, particular instruments, artist demographics, singer accent, year of release, marketing, etc. These aspects are not captured in the dataset and therefore not represented below but with an open ear you may find examples of songs that you considered to be different genres are actually quite musically similar.

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Cluster 9

Cluster 10

Cluster 11

Cluster 12

Cluster 13

Cluster 14

Cluster 15

Cluster 16

Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022