An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

Related tags

Deep LearningPyParSVD
Overview

PYPARSVD

DOI Logo

This implementation allows for a singular value decomposition which is:

  1. Distributed using MPI4Py
  2. Streaming - data can be shown in batches to update the left singular vectors
  3. Randomized for further acceleration of any serial components of the overall algorithm.

The streaming algorithm used in this implementation is available in: "Sequential Karhunen–Loeve Basis Extraction and its Application to Images" by Avraham Levy and Michael Lindenbaum. IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000. This algorithm is implemented in Online_SVD_Serial.py.

The distributed computation of the SVD follows the implementation in "Approximate partitioned method of snapshots for POD." by Wang, Zhu, Brian McBee, and Traian Iliescu. Journal of Computational and Applied Mathematics 307 (2016): 374-384. This algorithm is validated in APMOS_Validation/.

The parallel QR algorithm (the TSQR method) required for the streaming feature may be found in "Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures." by Benson, Austin R., David F. Gleich, and James Demmel. 2013 IEEE international conference on big data. IEEE, 2013. This algorithm is validated in Parallel_QR.

The randomized algorithm used to accelerate the computation of the serial SVD in partitioned method of snapshots may be found in "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." by Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. SIAM review 53.2 (2011): 217-288.

To enable this feature set low_rank=True for initializing the online_svd_calculator class object in online_svd_parallel.py

To reproduce results on a shared memory platform (needs atleast 6 available ranks): export OPENBLAS_NUM_THREADS=1 to ensure numpy does not multithread for this experiment.

  1. Run python data_splitter.py to generate exemplar data etc.
  2. Run python online_svd_serial.py for serial deployment of streaming algorithm.
  3. Run mpirun -np 6 python online_svd_parallel.py for parallel/streaming deployment.

Caution: Due to differences in the parallel and serial versions of the algorithm, singular vectors may be "flipped". An orthogonality check is also deployed for an additional sanity check.

Example extractions of left singular vectors and singular values Comparison 1 Comparison 2 Comparison 3

Even the simple problem demonstrated here (8192 spatial points and 800 snapshots) achieves a dramatic acceleration in time to solution from serial to parallelized-streaming implementations (~25X). Note that the key advantage of the parallelized version is the lack of a data-transfer requirement in case this routine is being called from a simulation.

You might also like...
Streaming over lightweight data transformations
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Securetar - A streaming wrapper around python tarfile and allow secure handling files and support encryption

Secure Tar Secure Tarfile library It's a streaming wrapper around python tarfile

Real-time Object Detection for Streaming Perception, CVPR 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Releases(v1.0)
Owner
Romit Maulik
Argonne Leadership Computing Facility
Romit Maulik
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023