Music library streaming app written in Flask & VueJS

Overview

djtaytay

Build Status

This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. It has a rudimentary file browser. Additionally, it decodes files using ffmpeg, reencodes as webm vorbis and streams them to the browser.

This is an active work in progress. Notably, it needs better authentication, validation against the user input to ffmpeg, and better UI controls.

How to set up a test environment

Prerequisites:

  • Linux (may work on OS X, untested)
  • Docker

Clone this repo, then

virtualenv --python=python3 virtualenv
source virtualenv/bin/activate
pip install -r requirements.txt
echo "export MUSIC_DIR=$YOUR_PATH_HERE" >> .env
echo "export SECRET_KEY=$(python -c 'import os; print(os.urandom(16))')" >> .env
echo "export ADMIN_PASSWORD='super secret password unicorn'" >> .env
echo "export DB_CONNECTION_STRING='sqlite:///sqlite.db'" >> .env
echo "export DEBUG=True" >> .env
python ./initialize_db.py
python ./djtaytay.py

and click here; default username is admin, password is the ADMIN_PASSWORD variable above.

Notes on production deployment

This service works by transcoding media files in memory and serving the content through an HTML5 <audio> tag as an Ogg Vorbis stream. Some browsers will not even attempt to load most of the contents of a stream like this at once, instead opting to stream it in as needed. Long streams like this do not play nicely with Flask's debug webserver; it is highly recommended to run this behind a real WSGI server, like gunicorn. If you find that your streams are being served incompletely, set the --timeout value to a somewhat higher value, like 150 seconds.

Additionally, it is highly recommended to run this behind a real web server to buffer the data from the WSGI server to the client without keeping a WSGI worker busy all the time. Nginx has a similar configuration, send_timeout, that specifies how long a connection is allowed to stay idle before closing the connection. It is also recommended to increase this value to something higher, like 150 seconds as well.

Carefully consider these changes though; these configuration changes make a Denial of Service attack much easier to achieve, by creating a ton of very idle connections to the service. Even if you do not change your WSGI server's timeout and web server's client idle timeout, it is highly recommended to run this service with a real web server and WSGI server instead of the built-in debug server; it is much more performant, reliable, and handles large files much better.

Running a gunicorn-based WSGI server in docker can be accomplished by running run.sh.

Todo

  • add nice playlist functionality
  • handle failures better
  • more style for this bad boy
Owner
Ryan Tasson
taking a break from the regular nine to five to gut renovate a house.
Ryan Tasson
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022