Meta Learning for Semi-Supervised Few-Shot Classification

Overview

few-shot-ssl-public

Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv]

Dependencies

  • cv2
  • numpy
  • pandas
  • python 2.7 / 3.5+
  • tensorflow 1.3+
  • tqdm

Our code is tested on Ubuntu 14.04 and 16.04.

Setup

First, designate a folder to be your data root:

export DATA_ROOT={DATA_ROOT}

Then, set up the datasets following the instructions in the subsections.

Omniglot

[Google Drive] (9.3 MB)

# Download and place "omniglot.tar.gz" in "$DATA_ROOT/omniglot".
mkdir -p $DATA_ROOT/omniglot
cd $DATA_ROOT/omniglot
mv ~/Downloads/omniglot.tar.gz .
tar -xzvf omniglot.tar.gz
rm -f omniglot.tar.gz

miniImageNet

[Google Drive] (1.1 GB)

Update: Python 2 and 3 compatible version: [train] [val] [test]

# Download and place "mini-imagenet.tar.gz" in "$DATA_ROOT/mini-imagenet".
mkdir -p $DATA_ROOT/mini-imagenet
cd $DATA_ROOT/mini-imagenet
mv ~/Downloads/mini-imagenet.tar.gz .
tar -xzvf mini-imagenet.tar.gz
rm -f mini-imagenet.tar.gz

tieredImageNet

[Google Drive] (12.9 GB)

# Download and place "tiered-imagenet.tar" in "$DATA_ROOT/tiered-imagenet".
mkdir -p $DATA_ROOT/tiered-imagenet
cd $DATA_ROOT/tiered-imagenet
mv ~/Downloads/tiered-imagenet.tar .
tar -xvf tiered-imagenet.tar
rm -f tiered-imagenet.tar

Note: Please make sure that the following hardware requirements are met before running tieredImageNet experiments.

  • Disk: 30 GB
  • RAM: 32 GB

Core Experiments

Please run the following scripts to reproduce the core experiments.

# Clone the repository.
git clone https://github.com/renmengye/few-shot-ssl-public.git
cd few-shot-ssl-public

# To train a model.
python run_exp.py --data_root $DATA_ROOT             \
                  --dataset {DATASET}                \
                  --label_ratio {LABEL_RATIO}        \
                  --model {MODEL}                    \
                  --results {SAVE_CKPT_FOLDER}       \
                  [--disable_distractor]

# To test a model.
python run_exp.py --data_root $DATA_ROOT             \
                  --dataset {DATASET}                \
                  --label_ratio {LABEL_RATIO}        \
                  --model {MODEL}                    \
                  --results {SAVE_CKPT_FOLDER}       \
                  --eval --pretrain {MODEL_ID}       \
                  [--num_unlabel {NUM_UNLABEL}]      \
                  [--num_test {NUM_TEST}]            \
                  [--disable_distractor]             \
                  [--use_test]
  • Possible {MODEL} options are basic, kmeans-refine, kmeans-refine-radius, and kmeans-refine-mask.
  • Possible {DATASET} options are omniglot, mini-imagenet, tiered-imagenet.
  • Use {LABEL_RATIO} 0.1 for omniglot and tiered-imagenet, and 0.4 for mini-imagenet.
  • Replace {MODEL_ID} with the model ID obtained from the training program.
  • Replace {SAVE_CKPT_FOLDER} with the folder where you save your checkpoints.
  • Add additional flags --num_unlabel 20 --num_test 20 for testing mini-imagenet and tiered-imagenet models, so that each episode contains 20 unlabeled images per class and 20 query images per class.
  • Add an additional flag --disable_distractor to remove all distractor classes in the unlabeled images.
  • Add an additional flag --use_test to evaluate on the test set instead of the validation set.
  • More commandline details see run_exp.py.

Simple Baselines for Few-Shot Classification

Please run the following script to reproduce a suite of baseline results.

python run_baseline_exp.py --data_root $DATA_ROOT    \
                           --dataset {DATASET}
  • Possible DATASET options are omniglot, mini-imagenet, tiered-imagenet.

Run over Multiple Random Splits

Please run the following script to reproduce results over 10 random label/unlabel splits, and test the model with different number of unlabeled items per episode. The default seeds are 0, 1001, ..., 9009.

python run_multi_exp.py --data_root $DATA_ROOT       \
                        --dataset {DATASET}          \
                        --label_ratio {LABEL_RATIO}  \
                        --model {MODEL}              \
                        [--disable_distractor]       \
                        [--use_test]
  • Possible MODEL options are basic, kmeans-refine, kmeans-refine-radius, and kmeans-refine-mask.
  • Possible DATASET options are omniglot, mini_imagenet, tiered_imagenet.
  • Use {LABEL_RATIO} 0.1 for omniglot and tiered-imagenet, and 0.4 for mini-imagenet.
  • Add an additional flag --disable_distractor to remove all distractor classes in the unlabeled images.
  • Add an additional flag --use_test to evaluate on the test set instead of the validation set.

Citation

If you use our code, please consider cite the following:

  • Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle and Richard S. Zemel. Meta-Learning for Semi-Supervised Few-Shot Classification. In Proceedings of 6th International Conference on Learning Representations (ICLR), 2018.
@inproceedings{ren18fewshotssl,
  author   = {Mengye Ren and 
              Eleni Triantafillou and 
              Sachin Ravi and 
              Jake Snell and 
              Kevin Swersky and 
              Joshua B. Tenenbaum and 
              Hugo Larochelle and 
              Richard S. Zemel},
  title    = {Meta-Learning for Semi-Supervised Few-Shot Classification},
  booktitle= {Proceedings of 6th International Conference on Learning Representations {ICLR}},
  year     = {2018},
}
Owner
Mengye Ren
Mengye Ren
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

Vivek Kumar Singh 11 Sep 25, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022