Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Overview

Discrete Denoising Flows

This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1].

To give a short overview on the architecture of the implementation:

  • main.py: Starting point and configuration of experiments
  • training.py: Training logic
  • visualization_.py: Functions for plotting samples from trained model
  • model/categorical_prior.py: Prior distribution and splitpriors
  • model/model.py: Overall model object (Discrete Denoising Flow and prior)
  • model/flow.py: Discrete Denoising Flow object
  • model/flow_layers.py: Implementations of
    • Discrete denoising coupling layer (including the conditional permutation operation introduced in the paper)
    • Permutation layer
    • Squeeze layer
  • model/network.py: Implementation of DenseNet and simple MLP
  • data/*: Logic for loading Eight Gaussians, MNIST and Cityscapes datasets

Usage

For each of the following commands, the results are saved in the folder ./results.

8 Gaussians

To test Discrete Denoising Flows with limited computational resources, run the 8 Gaussian toy data experiment. It takes only a few minutes to execute on a 12 GB RAM laptop.

python main.py --dataset='8gaussians' --k_sort=91 --n_hidden_nn=256 --net_epochs=30 --prior_epochs=20

Binary MNIST

For the experiment on Binary MNIST run

python main.py --dataset='mnist' --k_sort=2 --n_hidden_nn=512 --densenet_depth=10 --net_epochs=100 --prior_epochs=30 

For running the experiment without splitpriors, set the flag --with_splitprior False.

Cityscapes

For this experiment, it is necessary to download the Cityscapes data set. For preprocessing, download from this repository the data_to_npy.py and cityscapes.py files that perform the conversion of the original data. This creates three .npy files that should be placed in ./data/cityscapes/preprocessed. Then run

python main.py --dataset='cityscapes' --k_sort=4 --n_hidden_nn=512 --densenet_depth=15 --net_epochs=100 --prior_epochs=30 

Again, for running the experiment without splitpriors, set the flag --with_splitprior False.

Acknowledgements

We gratefully acknowledge the financial support of Robert Bosch GmbH.

References

[1] Alexandra Lindt and Emiel Hoogeboom. "Discrete Denoising Flows." ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (2021).

Owner
Alexandra Lindt
Alexandra Lindt
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022