Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Overview

Discrete Denoising Flows

This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1].

To give a short overview on the architecture of the implementation:

  • main.py: Starting point and configuration of experiments
  • training.py: Training logic
  • visualization_.py: Functions for plotting samples from trained model
  • model/categorical_prior.py: Prior distribution and splitpriors
  • model/model.py: Overall model object (Discrete Denoising Flow and prior)
  • model/flow.py: Discrete Denoising Flow object
  • model/flow_layers.py: Implementations of
    • Discrete denoising coupling layer (including the conditional permutation operation introduced in the paper)
    • Permutation layer
    • Squeeze layer
  • model/network.py: Implementation of DenseNet and simple MLP
  • data/*: Logic for loading Eight Gaussians, MNIST and Cityscapes datasets

Usage

For each of the following commands, the results are saved in the folder ./results.

8 Gaussians

To test Discrete Denoising Flows with limited computational resources, run the 8 Gaussian toy data experiment. It takes only a few minutes to execute on a 12 GB RAM laptop.

python main.py --dataset='8gaussians' --k_sort=91 --n_hidden_nn=256 --net_epochs=30 --prior_epochs=20

Binary MNIST

For the experiment on Binary MNIST run

python main.py --dataset='mnist' --k_sort=2 --n_hidden_nn=512 --densenet_depth=10 --net_epochs=100 --prior_epochs=30 

For running the experiment without splitpriors, set the flag --with_splitprior False.

Cityscapes

For this experiment, it is necessary to download the Cityscapes data set. For preprocessing, download from this repository the data_to_npy.py and cityscapes.py files that perform the conversion of the original data. This creates three .npy files that should be placed in ./data/cityscapes/preprocessed. Then run

python main.py --dataset='cityscapes' --k_sort=4 --n_hidden_nn=512 --densenet_depth=15 --net_epochs=100 --prior_epochs=30 

Again, for running the experiment without splitpriors, set the flag --with_splitprior False.

Acknowledgements

We gratefully acknowledge the financial support of Robert Bosch GmbH.

References

[1] Alexandra Lindt and Emiel Hoogeboom. "Discrete Denoising Flows." ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (2021).

Owner
Alexandra Lindt
Alexandra Lindt
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Single Image Super-Resolution with EDSR, WDSR and SRGAN A Tensorflow 2.x based implementation of Enhanced Deep Residual Networks for Single Image Supe

Martin Krasser 1.3k Jan 06, 2023
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
LeetCode Solutions https://t.me/tenvlad

leetcode LeetCode Solutions groupped by common patterns YouTube: https://www.youtube.com/c/vladten Telegram: https://t.me/nilinterface Problems source

Vlad Ten 158 Dec 29, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022