The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

Overview

BMC

The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BibTex entry available here.

BMC (BPF Memory Cache) is an in-kernel cache for memcached. It enables runtime, crash-safe extension of the Linux kernel to process specific memcached requests before the execution of the standard network stack. BMC does not require modification of neither the Linux kernel nor the memcached application. Running memcached with BMC improves throughput by up to 18x compared to the vanilla memcached application.

Requirements

Linux kernel v5.3 or higher is required to run BMC.

Other software dependencies are required to build BMC and Memcached-SR (see Building BMC and Building Memcached-SR).

Build instructions

Building BMC

BMC must be compiled with libbpf and other header files obtained from kernel sources. The project does not include the kernel sources, but the kernel-src-download.sh and kernel-src-prepare.sh scripts automate the download of the kernel sources and prepare them for the compilation of BMC.

These scripts require the following software to be installed:

gpg curl tar xz make gcc flex bison libssl-dev libelf-dev

The project uses llvm and clang version 9 to build BMC, but more recent versions might work as well:

llvm-9 clang-9

Note that libelf-dev is also required to build libbpf and BMC.

With the previous software installed, BMC can be built with the following:

$ ./kernel-src-download.sh
$ ./kernel-src-prepare.sh
$ cd bmc && make

After BMC has been successfully built, kernel sources can be removed by running the kernel-src-remove.sh script from the project root.

Building Memcached-SR

Memcached-SR is based on memcached v1.5.19. Building it requires the following software:

clang-9 (or gcc-9) automake libevent-dev

Either clang-9 or gcc-9 is required in order to compile memcached without linking issues. Depending on your distribution, you might also need to use the -Wno-deprecated-declarations compilation flag.

Memcached-SR can be built with the following:

$ cd memcached-sr 
$ ./autogen.sh
$ CC=clang-9 CFLAGS='-DREUSEPORT_OPT=1 -Wno-deprecated-declarations' ./configure && make

The memcached binary will be located in the memcached-sr directory.

Further instructions

TC egress hook

BMC doesn't attach the tx_filter eBPF program to the egress hook of TC, it needs to be attached manually.

To do so, you first need to make sure that the BPF is mounted, if it isn't you can mount it with the following command:

# mount -t bpf none /sys/fs/bpf/

Once BMC is running and the tx_filter program has been pinned to /sys/fs/bpf/bmc_tx_filter, you can attach it using the tc command line:

# tc qdisc add dev 
   
     clsact
   
# tc filter add dev 
   
     egress bpf object-pinned /sys/fs/bpf/bmc_tx_filter
   

After you are done using BMC, you can detach the program with these commands:

# tc filter del dev 
   
     egress
   
# tc qdisc del dev 
   
     clsact
   

And unpin the program with # rm /sys/fs/bpf/bmc_tx_filter

License

Files under the bmc directory are licensed under the GNU Lesser General Public License version 2.1.

Files under the memcached-sr directory are licensed under the BSD-3-Clause BSD license.

Cite this work

BibTex:

@inproceedings{265047,
	title        = {{BMC}: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing},
	author       = {Yoann Ghigoff and Julien Sopena and Kahina Lazri and Antoine Blin and Gilles Muller},
	year         = 2021,
	month        = apr,
	booktitle    = {18th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 21)},
	publisher    = {{USENIX} Association},
	pages        = {487--501},
	isbn         = {978-1-939133-21-2},
	url          = {https://www.usenix.org/conference/nsdi21/presentation/ghigoff}
}
Owner
Orange
Open Source by Orange
Orange
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
Alex Pashevich 62 Dec 24, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022