Active learning for Mask R-CNN in Detectron2

Related tags

Deep Learningmaskal
Overview

MaskAL - Active learning for Mask R-CNN in Detectron2

maskAL_framework

Summary

MaskAL is an active learning framework that automatically selects the most-informative images for training Mask R-CNN. By using MaskAL, it is possible to reduce the number of image annotations, without negatively affecting the performance of Mask R-CNN. Generally speaking, MaskAL involves the following steps:

  1. Train Mask R-CNN on a small initial subset of a bigger dataset
  2. Use the trained Mask R-CNN algorithm to make predictions on the unlabelled images of the remaining dataset
  3. Select the most-informative images with a sampling algorithm
  4. Annotate the most-informative images, and then retrain Mask R-CNN on the most informative-images
  5. Repeat step 2-4 for a specified number of sampling iterations

The figure below shows the performance improvement of MaskAL on our dataset. By using MaskAL, the performance of Mask R-CNN improved more quickly and therefore 1400 annotations could be saved (see the black dashed line):

maskAL_graph

Installation

See INSTALL.md

Data preparation and training

Split the dataset in a training set, validation set and a test set. It is not required to annotate every image in the training set, because MaskAL will select the most-informative images automatically.

  1. From the training set, a smaller initial dataset is randomly sampled (the dataset size can be specified in the maskAL.yaml file). The images that do not have an annotation are placed in the annotate subfolder inside the image folder. You first need to annotate these images with LabelMe (json), V7-Darwin (json), Supervisely (json) or CVAT (xml) (when using CVAT, export the annotations to LabelMe 3.0 format). Refer to our annotation procedure: ANNOTATION.md
  2. Step 1 is repeated for the validation set and the test set (the file locations can be specified in the maskAL.yaml file).
  3. After the first training iteration of Mask R-CNN, the sampling algorithm selects the most-informative images (its size can be specified in the maskAL.yaml file).
  4. The most-informative images that don't have an annotation, are placed in the annotate subfolder. Annotate these images with LabelMe (json), V7-Darwin (json), Supervisely (json) or CVAT (xml) (when using CVAT, export the annotations to LabelMe 3.0 format).
  5. OPTIONAL: it is possible to use the trained Mask R-CNN model to auto-annotate the unlabelled images to further reduce annotation time. Activate auto_annotate in the maskAL.yaml file, and specify the export_format (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely').
  6. Step 3-5 are repeated for several training iterations. The number of iterations (loops) can be specified in the maskAL.yaml file.

Please note that MaskAL does not work with the default COCO json-files of detectron2. These json-files contain all annotations that are completed before the training starts. Because MaskAL involves an iterative train and annotation procedure, the default COCO json-files lack the desired format.

How to use MaskAL

Open a terminal (Ctrl+Alt+T):

(base) [email protected]:~$ cd maskal
(base) [email protected]:~/maskal$ conda activate maskAL
(maskAL) [email protected]:~/maskal$ python maskAL.py --config maskAL.yaml

Change the following settings in the maskAL.yaml file:
Setting Description
weightsroot The file directory where the weight-files are stored
resultsroot The file directory where the result-files are stored
dataroot The root directory where all image-files are stored
use_initial_train_dir Set this to True when you want to start the active-learning from an initial training dataset. When False, the initial dataset of size initial_datasize is randomly sampled from the traindir
initial_train_dir When use_initial_train_dir is activated: the file directory where the initial training images and annotations are stored
traindir The file directory where the training images and annotations are stored
valdir The file directory where the validation images and annotations are stored
testdir The file directory where the test images and annotations are stored
network_config The Mask R-CNN configuration-file (.yaml) file (see the folder './configs')
pretrained_weights The pretrained weights to start the active-learning. Either specify the network_config (.yaml) or a custom weights-file (.pth or .pkl)
cuda_visible_devices The identifiers of the CUDA device(s) you want to use for training and sampling (in string format, for example: '0,1')
classes The names of the classes in the image annotations
learning_rate The learning-rate to train Mask R-CNN (default value: 0.01)
confidence_threshold Confidence-threshold for the image analysis with Mask R-CNN (default value: 0.5)
nms_threshold Non-maximum suppression threshold for the image analysis with Mask R-CNN (default value: 0.3)
initial_datasize The size of the initial dataset to start the active learning (when use_initial_train_dir is False)
pool_size The number of most-informative images that are selected from the traindir
loops The number of sampling iterations
auto_annotate Set this to True when you want to auto-annotate the unlabelled images
export_format When auto_annotate is activated: specify the export-format of the annotations (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely')
supervisely_meta_json When supervisely auto_annotate is activated: specify the file location of the meta.json for supervisely export

Description of the other settings in the maskAL.yaml file: MISC_SETTINGS.md

Please refer to the folder active_learning/config for more setting-files.

Other software scripts

Use a trained Mask R-CNN algorithm to auto-annotate unlabelled images: auto_annotate.py

Argument Description
--img_dir The file directory where the unlabelled images are stored
--network_config Configuration of the backbone of the network
--classes The names of the classes of the annotated instances
--conf_thres Confidence threshold of the CNN to do the image analysis
--nms_thres Non-maximum suppression threshold of the CNN to do the image analysis
--weights_file Weight-file (.pth) of the trained CNN
--export_format Specifiy the export-format of the annotations (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely')
--supervisely_meta_json The file location of the meta.json for supervisely export

Example syntax (auto_annotate.py):

python auto_annotate.py --img_dir datasets/train --network_config COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml --classes healthy damaged matured cateye headrot --conf_thres 0.5 --nms_thres 0.2 --weights_file weights/broccoli/model_final.pth --export_format supervisely --supervisely_meta_json datasets/meta.json

Troubleshooting

See TROUBLESHOOTING.md

Citation

See our research article for more information or cross-referencing:

@misc{blok2021active,
      title={Active learning with MaskAL reduces annotation effort for training Mask R-CNN}, 
      author={Pieter M. Blok and Gert Kootstra and Hakim Elchaoui Elghor and Boubacar Diallo and Frits K. van Evert and Eldert J. van Henten},
      year={2021},
      eprint={2112.06586},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url = {https://arxiv.org/abs/2112.06586},
}

License

Our software was forked from Detectron2 (https://github.com/facebookresearch/detectron2). As such, the software will be released under the Apache 2.0 license.

Acknowledgements

The uncertainty calculation methods were inspired by the research of Doug Morrison:
https://nikosuenderhauf.github.io/roboticvisionchallenges/assets/papers/CVPR19/rvc_4.pdf

Two software methods were inspired by the work of RovelMan:
https://github.com/RovelMan/active-learning-framework

MaskAL uses the Bayesian Active Learning (BaaL) software:
https://github.com/ElementAI/baal

Contact

MaskAL is developed and maintained by Pieter Blok.

Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub

516 Dec 28, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022