Active learning for Mask R-CNN in Detectron2

Related tags

Deep Learningmaskal
Overview

MaskAL - Active learning for Mask R-CNN in Detectron2

maskAL_framework

Summary

MaskAL is an active learning framework that automatically selects the most-informative images for training Mask R-CNN. By using MaskAL, it is possible to reduce the number of image annotations, without negatively affecting the performance of Mask R-CNN. Generally speaking, MaskAL involves the following steps:

  1. Train Mask R-CNN on a small initial subset of a bigger dataset
  2. Use the trained Mask R-CNN algorithm to make predictions on the unlabelled images of the remaining dataset
  3. Select the most-informative images with a sampling algorithm
  4. Annotate the most-informative images, and then retrain Mask R-CNN on the most informative-images
  5. Repeat step 2-4 for a specified number of sampling iterations

The figure below shows the performance improvement of MaskAL on our dataset. By using MaskAL, the performance of Mask R-CNN improved more quickly and therefore 1400 annotations could be saved (see the black dashed line):

maskAL_graph

Installation

See INSTALL.md

Data preparation and training

Split the dataset in a training set, validation set and a test set. It is not required to annotate every image in the training set, because MaskAL will select the most-informative images automatically.

  1. From the training set, a smaller initial dataset is randomly sampled (the dataset size can be specified in the maskAL.yaml file). The images that do not have an annotation are placed in the annotate subfolder inside the image folder. You first need to annotate these images with LabelMe (json), V7-Darwin (json), Supervisely (json) or CVAT (xml) (when using CVAT, export the annotations to LabelMe 3.0 format). Refer to our annotation procedure: ANNOTATION.md
  2. Step 1 is repeated for the validation set and the test set (the file locations can be specified in the maskAL.yaml file).
  3. After the first training iteration of Mask R-CNN, the sampling algorithm selects the most-informative images (its size can be specified in the maskAL.yaml file).
  4. The most-informative images that don't have an annotation, are placed in the annotate subfolder. Annotate these images with LabelMe (json), V7-Darwin (json), Supervisely (json) or CVAT (xml) (when using CVAT, export the annotations to LabelMe 3.0 format).
  5. OPTIONAL: it is possible to use the trained Mask R-CNN model to auto-annotate the unlabelled images to further reduce annotation time. Activate auto_annotate in the maskAL.yaml file, and specify the export_format (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely').
  6. Step 3-5 are repeated for several training iterations. The number of iterations (loops) can be specified in the maskAL.yaml file.

Please note that MaskAL does not work with the default COCO json-files of detectron2. These json-files contain all annotations that are completed before the training starts. Because MaskAL involves an iterative train and annotation procedure, the default COCO json-files lack the desired format.

How to use MaskAL

Open a terminal (Ctrl+Alt+T):

(base) [email protected]:~$ cd maskal
(base) [email protected]:~/maskal$ conda activate maskAL
(maskAL) [email protected]:~/maskal$ python maskAL.py --config maskAL.yaml

Change the following settings in the maskAL.yaml file:
Setting Description
weightsroot The file directory where the weight-files are stored
resultsroot The file directory where the result-files are stored
dataroot The root directory where all image-files are stored
use_initial_train_dir Set this to True when you want to start the active-learning from an initial training dataset. When False, the initial dataset of size initial_datasize is randomly sampled from the traindir
initial_train_dir When use_initial_train_dir is activated: the file directory where the initial training images and annotations are stored
traindir The file directory where the training images and annotations are stored
valdir The file directory where the validation images and annotations are stored
testdir The file directory where the test images and annotations are stored
network_config The Mask R-CNN configuration-file (.yaml) file (see the folder './configs')
pretrained_weights The pretrained weights to start the active-learning. Either specify the network_config (.yaml) or a custom weights-file (.pth or .pkl)
cuda_visible_devices The identifiers of the CUDA device(s) you want to use for training and sampling (in string format, for example: '0,1')
classes The names of the classes in the image annotations
learning_rate The learning-rate to train Mask R-CNN (default value: 0.01)
confidence_threshold Confidence-threshold for the image analysis with Mask R-CNN (default value: 0.5)
nms_threshold Non-maximum suppression threshold for the image analysis with Mask R-CNN (default value: 0.3)
initial_datasize The size of the initial dataset to start the active learning (when use_initial_train_dir is False)
pool_size The number of most-informative images that are selected from the traindir
loops The number of sampling iterations
auto_annotate Set this to True when you want to auto-annotate the unlabelled images
export_format When auto_annotate is activated: specify the export-format of the annotations (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely')
supervisely_meta_json When supervisely auto_annotate is activated: specify the file location of the meta.json for supervisely export

Description of the other settings in the maskAL.yaml file: MISC_SETTINGS.md

Please refer to the folder active_learning/config for more setting-files.

Other software scripts

Use a trained Mask R-CNN algorithm to auto-annotate unlabelled images: auto_annotate.py

Argument Description
--img_dir The file directory where the unlabelled images are stored
--network_config Configuration of the backbone of the network
--classes The names of the classes of the annotated instances
--conf_thres Confidence threshold of the CNN to do the image analysis
--nms_thres Non-maximum suppression threshold of the CNN to do the image analysis
--weights_file Weight-file (.pth) of the trained CNN
--export_format Specifiy the export-format of the annotations (currently supported formats: 'labelme', 'cvat', 'darwin', 'supervisely')
--supervisely_meta_json The file location of the meta.json for supervisely export

Example syntax (auto_annotate.py):

python auto_annotate.py --img_dir datasets/train --network_config COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml --classes healthy damaged matured cateye headrot --conf_thres 0.5 --nms_thres 0.2 --weights_file weights/broccoli/model_final.pth --export_format supervisely --supervisely_meta_json datasets/meta.json

Troubleshooting

See TROUBLESHOOTING.md

Citation

See our research article for more information or cross-referencing:

@misc{blok2021active,
      title={Active learning with MaskAL reduces annotation effort for training Mask R-CNN}, 
      author={Pieter M. Blok and Gert Kootstra and Hakim Elchaoui Elghor and Boubacar Diallo and Frits K. van Evert and Eldert J. van Henten},
      year={2021},
      eprint={2112.06586},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url = {https://arxiv.org/abs/2112.06586},
}

License

Our software was forked from Detectron2 (https://github.com/facebookresearch/detectron2). As such, the software will be released under the Apache 2.0 license.

Acknowledgements

The uncertainty calculation methods were inspired by the research of Doug Morrison:
https://nikosuenderhauf.github.io/roboticvisionchallenges/assets/papers/CVPR19/rvc_4.pdf

Two software methods were inspired by the work of RovelMan:
https://github.com/RovelMan/active-learning-framework

MaskAL uses the Bayesian Active Learning (BaaL) software:
https://github.com/ElementAI/baal

Contact

MaskAL is developed and maintained by Pieter Blok.

Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022