A PyTorch library and evaluation platform for end-to-end compression research

Overview

ID-CompressAI-logo

CompressAI

License PyPI Downloads

CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research.

CompressAI currently provides:

  • custom operations, layers and models for deep learning based data compression
  • a partial port of the official TensorFlow compression library
  • pre-trained end-to-end compression models for learned image compression
  • evaluation scripts to compare learned models against classical image/video compression codecs

PSNR performances plot on Kodak

Note: Multi-GPU support is now experimental.

Installation

CompressAI supports python 3.6+ and PyTorch 1.7+.

pip:

pip install compressai

Note: wheels are available for Linux and MacOS.

From source:

A C++17 compiler, a recent version of pip (19.0+), and common python packages are also required (see setup.py for the full list).

To get started locally and install the development version of CompressAI, run the following commands in a virtual environment:

git clone https://github.com/InterDigitalInc/CompressAI compressai
cd compressai
pip install -U pip && pip install -e .

For a custom installation, you can also run one of the following commands:

  • pip install -e '.[dev]': install the packages required for development (testing, linting, docs)
  • pip install -e '.[tutorials]': install the packages required for the tutorials (notebooks)
  • pip install -e '.[all]': install all the optional packages

Note: Docker images will be released in the future. Conda environments are not officially supported.

Documentation

Usage

Examples

Script and notebook examples can be found in the examples/ directory.

To encode/decode images with the provided pre-trained models, run the codec.py example:

python3 examples/codec.py --help

An examplary training script with a rate-distortion loss is provided in examples/train.py. You can replace the model used in the training script with your own model implemented within CompressAI, and then run the script for a simple training pipeline:

python3 examples/train.py -d /path/to/my/image/dataset/ --epochs 300 -lr 1e-4 --batch-size 16 --cuda --save

Note: the training example uses a custom ImageFolder structure.

A jupyter notebook illustrating the usage of a pre-trained model for learned image compression is also provided in the examples directory:

pip install -U ipython jupyter ipywidgets matplotlib
jupyter notebook examples/

Evaluation

To evaluate a trained model on your own dataset, CompressAI provides an evaluation script:

python3 -m compressai.utils.eval_model checkpoint /path/to/images/folder/ -a $ARCH -p $MODEL_CHECKPOINT...

To evaluate traditional image/video codecs:

python3 -m compressai.utils.bench --help
python3 -m compressai.utils.bench bpg --help
python3 -m compressai.utils.bench vtm --help

Tests

Run tests with pytest:

pytest -sx --cov=compressai --cov-append --cov-report term-missing tests

Slow tests can be skipped with the -m "not slow" option.

License

CompressAI is licensed under the Apache License, Version 2.0

Contributing

We welcome feedback and contributions. Please open a GitHub issue to report bugs, request enhancements or if you have any questions.

Before contributing, please read the CONTRIBUTING.md file.

Authors

  • Jean Bégaint, Fabien Racapé, Simon Feltman and Akshay Pushparaja, InterDigital AI Lab.

Citation

If you use this project, please cite the relevant original publications for the models and datasets, and cite this project as:

@article{begaint2020compressai,
	title={CompressAI: a PyTorch library and evaluation platform for end-to-end compression research},
	author={B{\'e}gaint, Jean and Racap{\'e}, Fabien and Feltman, Simon and Pushparaja, Akshay},
	year={2020},
	journal={arXiv preprint arXiv:2011.03029},
}

Related links

Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023