Image classification for projects and researches

Overview

Python 3.7 Python 3.8 MIT License Coverage

KERAS CLASSIFY

Image classification for projects and researches

About The Project

Image classification is a commonly used problem in the experimental part of scientific papers and also frequently appears as part of the projects. With the desire to reduce time and effort, Keras Classify was created.

Getting Started

Installation

  1. Clone the repo: https://github.com/nguyentruonglau/keras-classify.git

  2. Install packages

    > python -m venv 
         
          
    > activate.bat (in scripts folder)
    > pip install -r requirements.txt
    
         

Todo List:

  • Cosine learning rate scheduler
  • Gradient-based Localization
  • Sota models
  • Synthetic data
  • Smart Resize
  • Support Python 3.X and Tf 2.X
  • Use imagaug for augmentation data
  • Use prefetching and multiprocessing to training.
  • Analysis Of Input Shape
  • Compiled using XLA, auto-clustering on GPU
  • Receiver operating characteristic

Quick Start

Analysis Of Input Shape

If your data has random input_shape, you don't know which input_shape to choose, the analysis program is the right choice for you. The algorithm is applied to analyze: Kernel Density Estimation.

Convert Data

From tensorflow 2.3.x already support auto fit_generator, however moving the data to npy file will make it easier to manage. The algorithm is applied to shuffle data: Random Permutation. Read more here.

Run: python convert/convert_npy.py

Training Model.

Design your model at model/models.py, we have made EfficientNetB0 the default. Adjust the appropriate hyperparameters and run: python train.py

Evaluate Model.

  • Statistics number of images per class after suffle on test data.

  • Provide model evalution indicators such as: Accuracy, Precesion, Recall, F1-Score and AUC (Area Under the Curve).

  • Plot training history of Accuracy, Loss, Receiver Operating Characteristic curve and Confusion Matrix.

Explainable AI.

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. "We propose a technique for producing 'visual explanations' for decisions from a large class of CNN-based models, making them more transparent" Ramprasaath R. Selvaraju ... Read more here.

Example Code

Use for projects

from keras.preprocessing.image import load_img, img_to_array
from keras.preprocessing.image import smart_resize
from tensorflow.keras.models import load_model
import tensorflow as tf
import numpy as np

#load pretrained model
model_path = 'data/output/model/val_accuracy_max.h5'
model = load_model(model_path)

#load data
img_path = 'images/images.jpg'
img = load_img(img_path)
img = img_to_array(img)
img = smart_resize(img, (72,72)) #resize to HxW
img = np.expand_dims(img, axis=0)

#prediction
y_pred = model.predict(img)
y_pred = np.argmax(y_pred, axis=1)

#see convert/output/label_decode.json
print(y_pred)

Smart resize (tf < 2.4.1)

from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.image load_img
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import image_ops
import numpy as np

def smart_resize(img, new_size, interpolation='bilinear'):
    """Resize images to a target size without aspect ratio distortion.

    Arguments:
      img (3D array): image data
      new_size (tuple): HxW

    Returns:
      [3D array]: image after resize
    """
    # Get infor of the image
    height, width, _ = img.shape
    target_height, target_width = new_size

    crop_height = (width * target_height) // target_width
    crop_width = (height * target_width) // target_height

    # Set back to input height / width if crop_height / crop_width is not smaller.
    crop_height = np.min([height, crop_height])
    crop_width = np.min([width, crop_width])

    crop_box_hstart = (height - crop_height) // 2
    crop_box_wstart = (width - crop_width) // 2

    # Infor to resize image
    crop_box_start = array_ops.stack([crop_box_hstart, crop_box_wstart, 0])
    crop_box_size = array_ops.stack([crop_height, crop_width, -1])

    img = array_ops.slice(img, crop_box_start, crop_box_size)
    img = image_ops.resize_images_v2(
        images=img,
        size=new_size,
        method=interpolation)
    return img.numpy()

Contributor

  1. BS Nguyen Truong Lau ([email protected])
  2. PhD Thai Trung Hieu ([email protected])

License

Distributed under the MIT License. See LICENSE for more information.

You might also like...
An end-to-end PyTorch framework for image and video classification
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

A python-image-classification web application project, written in Python and served through the Flask Microframework
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.

All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Releases(v1.0.0)
Owner
Nguyễn Trường Lâu
AI Researcher at FPT Software
Nguyễn Trường Lâu
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022