CNN Based Meta-Learning for Noisy Image Classification and Template Matching

Overview

CNN Based Meta-Learning for Noisy Image Classification and Template Matching

Introduction

This master thesis used a few-shot meta learning approach to solve the problem of open-set template matching. In this thesis, template matching is treated as a classification problem, but having availability of just template as class representative. Work is based on non-parametric approach of meta-learning Prototypical Network and FEAT.

Installation

Running this code requires:

  1. PyTorch and TorchVision. Tested on version 1.8
  2. Numpy
  3. TensorboardX for visualization of results
  4. Initial weights to get better accuracy is stored in Google-drive. These weights will allow faster convergence of training. Weights are obtained using pre-training on mini-Imagenet dataset.
  5. Dataset: Dataset is private in this thesis. But can be replaced with own custom dataset or mini-Imagenet or CUB.

Dataset structure

Dataset structure will follow the other few-shot learning(FSL) benchmark as used in Prototypical Network or FEAT. For this thesis, custom dataset is used. In this dataset, a clean template image is used as a template and using this template a single shot learning model learn the class representation. Then we have other images which belongs to same template and they are classified as same class as in FSL. In dataset which is split in train, val and test, the first row of each class in CSV file should be a clean template and rest can be noisy images. The job of model is to pick one noisy image and classify them into a specific template/class, where model learned the class representation from one clean template. In original FSL model, they don't fix templates as first row in each class in CSV, as they do classification not template matching. If you want to test this model for template matching, you can replace dataset with public dataset mini-Imagenet or CUB. But in this case first image of each class will be treated as template, but nevertheless it can give you idea how FSL model work in template matching domain.

Code Structures

This model used Prototypical Network and FEAT model as base structure. Then these modes are modified for template matching and this is documented along the code structure for changes. Additionally, novel distance function is used which differs from above two SOTA models and codes are modified to incorporate these new distance function. To reproduce the result run train_fsl.py. By default, train_fsl.py commented the training part of code, so you can uncomment it to train them on custom dataset. There are four parts in the code.

  • model: It contains the main files of the code, including the few-shot learning trainer, the dataloader, the network architectures, and baseline and comparison models.
  • data: Can be used with public dataset or custom one. Splits can be taken as per Prototypical Network or based on new use case.
  • saves: The pre-trained initialized weights of ConvNet, Res-12,18 and 50.

Model Training and Testing

Use file name train_fsl.py to start the training, make sure command "trainer.train()" is not commented. Training parameters can be either changed in model/utils.py file or these parameters can be passed as command line argument.

Use file name train_fsl.py to start the testing, but this time comment the command "trainer.train()".

Note: in file train_fsl.py three variable contains the path of dataset and CSV file-

  • image_path: This is the path of the folder where images are kept.
  • split_path: Path where training and validation CSV is stored.
  • test_path: Complete path of testing CSV file without .csv extension.

Task Related Arguments (taken and modified from FEAT model)

  • dataset: default ScanImage used in this project. Other option can be selected based on your own dataset name.

  • way: The number of templates/classes in a few-shot task during meta-training, default to 5. N Templates can be treated as N class.

  • eval_way: The number of templates/classes in a few-shot task during meta-test, default to 5. This indicates that no. of possible templates/classes in which a scanned image can be matched into.

  • shot: Number of instances in each class in a few-shot task during meta-training, default to 1. For template matching, shot will be always 1 as we will have only 1 template or one image from each class.

  • eval_shot: Number of instances in each class in a few-shot task during meta-test, default to 1. For template matching, shot will be always 1 as we will have only 1 template or one image from each class.

  • query: Number of instances of image at one go in each episode which needs to be matched with template or classified into one of the template. This is to evaluate the performance during meta-training, default to 15

  • eval_query: Number of instances of image at one go in each episode which needs to be matched with template or classified into one of the template. This is to evaluate the performance during meta-testing, default to 15

Optimization Related Arguments

  • max_epoch: The maximum number of training epochs, default to 2

  • episodes_per_epoch: The number of tasks sampled in each epoch, default to 100

  • num_eval_episodes: The number of tasks sampled from the meta-val set to evaluate the performance of the model (note that we fix sampling 10,000 tasks from the meta-test set during final evaluation), default to 200

  • lr: Learning rate for the model, default to 0.0001 with pre-trained weights

  • lr_mul: This is specially designed for set-to-set functions like FEAT. The learning rate for the top layer will be multiplied by this value (usually with faster learning rate). Default to 10

  • lr_scheduler: The scheduler to set the learning rate (step, multistep, or cosine), default to step

  • step_size: The step scheduler to decrease the learning rate. Set it to a single value if choose the step scheduler and provide multiple values when choosing the multistep scheduler. Default to 20

  • gamma: Learning rate ratio for step or multistep scheduler, default to 0.2

  • fix_BN: Set the encoder to the evaluation mode during the meta-training. This parameter is useful when meta-learning with the WRN. Default to False

  • augment: Whether to do data augmentation or not during meta-training, default to False

  • mom: The momentum value for the SGD optimizer, default to 0.9

  • weight_decay: The weight_decay value for SGD optimizer, default to 0.0005

Model Related Arguments (taken and modified from FEAT model)

  • model_class: Select if we are going to use Prototypical Network or FEAT network. Default to FEAT. Other option is ProtoNet

  • use_euclideanWithCosine: if this is set to true then distance function to compare template embedding and image is used is a weighted combination of euclidean distance + cosine similarity. Default calue is False

  • use_euclidean: Use the euclidean distance. Default to True. When set as False then cosine distance is used

  • backbone_class: Types of the encoder, i.e., the convolution network (ConvNet), ResNet-12 (Res12), or ResNet-18 (Res18) or ResNet-50(Res50), default to Res12

  • balance: This is the balance weight for the contrastive regularizer. Default to 0

  • temperature: Temperature over the logits, we #divide# logits with this value. It is useful when meta-learning with pre-trained weights. Default to 64. Lower temperature faster convergence but less accurate

  • temperature2: Temperature over the logits in the regularizer, we divide logits with this value. This is specially designed for the contrastive regularizer. Default to 64. Lower temperature faster convergence but less accurate

Other Arguments

  • orig_imsize: Whether to resize the images before loading the data into the memory. -1 means we do not resize the images and do not read all images into the memory. Default to -1

  • multi_gpu: Whether to use multiple gpus during meta-training, default to False

  • gpu: The index of GPU to use. Please provide multiple indexes if choose multi_gpu. Default to 0

  • log_interval: How often to log the meta-training information, default to every 50 tasks

  • eval_interval: How frequently to validate the model over the meta-val set, default to every 1 epoch

  • save_dir: The path to save the learned models, default to ./checkpoints

  • iterations: How many times model is evaluated in test time. Higher the better, due to less bias in results. Default to 100

Training scripts for FEAT

For example, to train the 1-shot 39-way FEAT model with ResNet-12 backbone on our custom dataset scanImage with euclidean distance as distance measure:

$ python train_fsl.py  --max_epoch 220 --model_class FEAT  --backbone_class Res12 --dataset ScanImage --way 38 --eval_way 39 --shot 1 --eval_shot 1 --query 15 --eval_query 1 --balance 1 --temperature 64 --temperature2 64 --lr 0.0002 --lr_mul 10 --lr_scheduler step --step_size 40 --gamma 0.5 --init_weights ./saves/initialization/scanimage/Res12-pre.pth --eval_interval 1 --use_euclidean --save_dir './saves' --multi_gpu --gpu 0 --iterations 3000 --num_workers 12

This command can be also be used to test the template matching model just change the eval_way as per number of target template at inference time. Then model will automaticaaly parse the final weight after training. As weight file name and folder is based on train time parameter name.

Note:

Since the dataset right now is private, in future if things changes we can release the datset as well. However, our final training weights are stored with file name ScanImage-FEAT-Res12-38w01s15q-Pre-DIS in Google drive.

Acknowledgment

Following repo codes, functions and research work were leveraged to develop this work package.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss the changes.

License

MIT

Owner
Kumar Manas
Working for traffic rule knowledge representation and explainable knowledge for autonomous driving.
Kumar Manas
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022