CNN Based Meta-Learning for Noisy Image Classification and Template Matching

Overview

CNN Based Meta-Learning for Noisy Image Classification and Template Matching

Introduction

This master thesis used a few-shot meta learning approach to solve the problem of open-set template matching. In this thesis, template matching is treated as a classification problem, but having availability of just template as class representative. Work is based on non-parametric approach of meta-learning Prototypical Network and FEAT.

Installation

Running this code requires:

  1. PyTorch and TorchVision. Tested on version 1.8
  2. Numpy
  3. TensorboardX for visualization of results
  4. Initial weights to get better accuracy is stored in Google-drive. These weights will allow faster convergence of training. Weights are obtained using pre-training on mini-Imagenet dataset.
  5. Dataset: Dataset is private in this thesis. But can be replaced with own custom dataset or mini-Imagenet or CUB.

Dataset structure

Dataset structure will follow the other few-shot learning(FSL) benchmark as used in Prototypical Network or FEAT. For this thesis, custom dataset is used. In this dataset, a clean template image is used as a template and using this template a single shot learning model learn the class representation. Then we have other images which belongs to same template and they are classified as same class as in FSL. In dataset which is split in train, val and test, the first row of each class in CSV file should be a clean template and rest can be noisy images. The job of model is to pick one noisy image and classify them into a specific template/class, where model learned the class representation from one clean template. In original FSL model, they don't fix templates as first row in each class in CSV, as they do classification not template matching. If you want to test this model for template matching, you can replace dataset with public dataset mini-Imagenet or CUB. But in this case first image of each class will be treated as template, but nevertheless it can give you idea how FSL model work in template matching domain.

Code Structures

This model used Prototypical Network and FEAT model as base structure. Then these modes are modified for template matching and this is documented along the code structure for changes. Additionally, novel distance function is used which differs from above two SOTA models and codes are modified to incorporate these new distance function. To reproduce the result run train_fsl.py. By default, train_fsl.py commented the training part of code, so you can uncomment it to train them on custom dataset. There are four parts in the code.

  • model: It contains the main files of the code, including the few-shot learning trainer, the dataloader, the network architectures, and baseline and comparison models.
  • data: Can be used with public dataset or custom one. Splits can be taken as per Prototypical Network or based on new use case.
  • saves: The pre-trained initialized weights of ConvNet, Res-12,18 and 50.

Model Training and Testing

Use file name train_fsl.py to start the training, make sure command "trainer.train()" is not commented. Training parameters can be either changed in model/utils.py file or these parameters can be passed as command line argument.

Use file name train_fsl.py to start the testing, but this time comment the command "trainer.train()".

Note: in file train_fsl.py three variable contains the path of dataset and CSV file-

  • image_path: This is the path of the folder where images are kept.
  • split_path: Path where training and validation CSV is stored.
  • test_path: Complete path of testing CSV file without .csv extension.

Task Related Arguments (taken and modified from FEAT model)

  • dataset: default ScanImage used in this project. Other option can be selected based on your own dataset name.

  • way: The number of templates/classes in a few-shot task during meta-training, default to 5. N Templates can be treated as N class.

  • eval_way: The number of templates/classes in a few-shot task during meta-test, default to 5. This indicates that no. of possible templates/classes in which a scanned image can be matched into.

  • shot: Number of instances in each class in a few-shot task during meta-training, default to 1. For template matching, shot will be always 1 as we will have only 1 template or one image from each class.

  • eval_shot: Number of instances in each class in a few-shot task during meta-test, default to 1. For template matching, shot will be always 1 as we will have only 1 template or one image from each class.

  • query: Number of instances of image at one go in each episode which needs to be matched with template or classified into one of the template. This is to evaluate the performance during meta-training, default to 15

  • eval_query: Number of instances of image at one go in each episode which needs to be matched with template or classified into one of the template. This is to evaluate the performance during meta-testing, default to 15

Optimization Related Arguments

  • max_epoch: The maximum number of training epochs, default to 2

  • episodes_per_epoch: The number of tasks sampled in each epoch, default to 100

  • num_eval_episodes: The number of tasks sampled from the meta-val set to evaluate the performance of the model (note that we fix sampling 10,000 tasks from the meta-test set during final evaluation), default to 200

  • lr: Learning rate for the model, default to 0.0001 with pre-trained weights

  • lr_mul: This is specially designed for set-to-set functions like FEAT. The learning rate for the top layer will be multiplied by this value (usually with faster learning rate). Default to 10

  • lr_scheduler: The scheduler to set the learning rate (step, multistep, or cosine), default to step

  • step_size: The step scheduler to decrease the learning rate. Set it to a single value if choose the step scheduler and provide multiple values when choosing the multistep scheduler. Default to 20

  • gamma: Learning rate ratio for step or multistep scheduler, default to 0.2

  • fix_BN: Set the encoder to the evaluation mode during the meta-training. This parameter is useful when meta-learning with the WRN. Default to False

  • augment: Whether to do data augmentation or not during meta-training, default to False

  • mom: The momentum value for the SGD optimizer, default to 0.9

  • weight_decay: The weight_decay value for SGD optimizer, default to 0.0005

Model Related Arguments (taken and modified from FEAT model)

  • model_class: Select if we are going to use Prototypical Network or FEAT network. Default to FEAT. Other option is ProtoNet

  • use_euclideanWithCosine: if this is set to true then distance function to compare template embedding and image is used is a weighted combination of euclidean distance + cosine similarity. Default calue is False

  • use_euclidean: Use the euclidean distance. Default to True. When set as False then cosine distance is used

  • backbone_class: Types of the encoder, i.e., the convolution network (ConvNet), ResNet-12 (Res12), or ResNet-18 (Res18) or ResNet-50(Res50), default to Res12

  • balance: This is the balance weight for the contrastive regularizer. Default to 0

  • temperature: Temperature over the logits, we #divide# logits with this value. It is useful when meta-learning with pre-trained weights. Default to 64. Lower temperature faster convergence but less accurate

  • temperature2: Temperature over the logits in the regularizer, we divide logits with this value. This is specially designed for the contrastive regularizer. Default to 64. Lower temperature faster convergence but less accurate

Other Arguments

  • orig_imsize: Whether to resize the images before loading the data into the memory. -1 means we do not resize the images and do not read all images into the memory. Default to -1

  • multi_gpu: Whether to use multiple gpus during meta-training, default to False

  • gpu: The index of GPU to use. Please provide multiple indexes if choose multi_gpu. Default to 0

  • log_interval: How often to log the meta-training information, default to every 50 tasks

  • eval_interval: How frequently to validate the model over the meta-val set, default to every 1 epoch

  • save_dir: The path to save the learned models, default to ./checkpoints

  • iterations: How many times model is evaluated in test time. Higher the better, due to less bias in results. Default to 100

Training scripts for FEAT

For example, to train the 1-shot 39-way FEAT model with ResNet-12 backbone on our custom dataset scanImage with euclidean distance as distance measure:

$ python train_fsl.py  --max_epoch 220 --model_class FEAT  --backbone_class Res12 --dataset ScanImage --way 38 --eval_way 39 --shot 1 --eval_shot 1 --query 15 --eval_query 1 --balance 1 --temperature 64 --temperature2 64 --lr 0.0002 --lr_mul 10 --lr_scheduler step --step_size 40 --gamma 0.5 --init_weights ./saves/initialization/scanimage/Res12-pre.pth --eval_interval 1 --use_euclidean --save_dir './saves' --multi_gpu --gpu 0 --iterations 3000 --num_workers 12

This command can be also be used to test the template matching model just change the eval_way as per number of target template at inference time. Then model will automaticaaly parse the final weight after training. As weight file name and folder is based on train time parameter name.

Note:

Since the dataset right now is private, in future if things changes we can release the datset as well. However, our final training weights are stored with file name ScanImage-FEAT-Res12-38w01s15q-Pre-DIS in Google drive.

Acknowledgment

Following repo codes, functions and research work were leveraged to develop this work package.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss the changes.

License

MIT

Owner
Kumar Manas
Working for traffic rule knowledge representation and explainable knowledge for autonomous driving.
Kumar Manas
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022