AI-based, context-driven network device ranking

Related tags

Deep Learningbatea
Overview

Python package

logo

Batea

A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets.

Batea is a context-driven network device ranking framework based on the anomaly detection family of machine learning algorithms. The goal of Batea is to allow security teams to automatically filter interesting network assets in large networks using nmap scan reports. We call those Gold Nuggets.

For more information about Gold Nuggeting and the science behind Batea, check out our whitepaper here

You can try Batea on your nmap scan data without downloading the software, using Batea Live: https://batea.delvesecurity.com/

How it works

Batea works by constructing a numerical representation (numpy) of all devices from your nmap reports (XML) and then applying anomaly detection methods to uncover the gold nuggets. It is easily extendable by adding specific features, or interesting characteristics, to the numerical representation of the network elements.

The numerical representation of the network is constructed using features, which are inspired by the expertise of the security community. The features act as elements of intuition, and the unsupervised anomaly detection methods allow the context of the network asset, or the total description of the network, to be used as the central building block of the ranking algorithm. The exact algorithm used is Isolation Forest (https://en.wikipedia.org/wiki/Isolation_forest)

Machine learning models are the heart of Batea. Models are algorithms trained on the whole dataset and used to predict a score on the same (and other) data points (network devices). Batea also allows for model persistence. That is, you can re-use pretrained models and export models trained on large datasets for further use.

Usage

# Complete info
$ sudo nmap -A 192.168.0.0/16 -oX output.xml

# Partial info
$ sudo nmap -O -sV 192.168.0.0/16 -oX output.xml


$ batea -v output.xml

Installation

$ git clone [email protected]:delvelabs/batea.git
$ cd batea
$ python3 setup.py sdist
$ pip3 install -r requirements.txt
$ pip3 install -e .

Developers Installation

$ git clone [email protected]:delvelabs/batea.git
$ cd batea
$ python3 -m venv batea/
$ source batea/bin/activate
$ python3 setup.py sdist
$ pip3 install -r requirements-dev.txt
$ pip3 install -e .
$ pytest

Example usage

# simple use (output top 5 gold nuggets with default format)
$ batea nmap_report.xml

# Output top 3
$ batea -n 3 nmap_report.xml

# Output all assets
$ batea -A nmap_report.xml

# Using multiple input files
$ batea -A nmap_report1.xml nmap_report2.xml

# Using wildcards (default xsl)
$ batea ./nmap*.xml
$ batea -f csv ./assets*.csv

# You can use batea on pretrained models and export trained models.

# Training, output and dumping model for persistence
$ batea -D mymodel.batea nmap_report.xml

# Using pretrained model
$ batea -L mymodel.batea nmap_report.xml

# Using preformatted csv along with xml files
$ batea -x nmap_report.xml -c portscan_data.csv

# Adjust verbosity
$ batea -vv nmap_report.xml

How to add a feature

Batea works by assigning numerical features to every host in the report (or series of report). Hosts are python objects derived from the nmap report. They consist of the following list of attributes: [ipv4, hostname, os_info, ports] where ports is a list of ports objects. Each port has the following list of attributes : [port, protocol, state, service, software, version, cpe, scripts], all defaulting to None.

Features are objects inherited from the FeatureBase class that instantiate a specific _transform method. This method always takes the list of all hosts as input and returns a lambda function that maps each host to a numpy column of numeric values (host order is conserved). The column is then appended to the matrix representation of the report. Features must output correct numerical values (floats or integers) and nothing else.

Most feature transformations are implemented using a simple lambda function. Just make sure to default a numeric value to every host for model compatibility.

Ex:

class CustomInterestingPorts(FeatureBase):
    def __init__(self):
        super().__init__(name="some_custom_interesting_ports")

    def _transform(self, hosts):
      """This method takes a list of hosts and returns a function that counts the number
      of host ports member from a predefined list of "interesting" ports, defaulting to 0.

      Parameters
      ----------
      hosts : list
          The list of all hosts

      Returns
      -------
      f : lambda function
          Counts the number of ports in the defined list.
      """
        member_ports = [21, 22, 25, 8080, 8081, 1234]
        f = lambda host: len([port for port in host.ports if port.port in member_ports])
        return f

You can then add the feature to the report by using the NmapReport.add_feature method in batea/__init__.py

from .features.basic_features import CustomInterestingPorts

def build_report():
    report = NmapReport()
    #[...]
    report.add_feature(CustomInterestingPorts())

    return report

Using precomputed tabular data (CSV)

It is possible to use preprocessed data to train the model or for prediction. The data has to be indexed by (ipv4, port) with one unique combination per row. The type of data should be close to what you expect from the XML version of an nmap report. A column has to use one of the following names, but you don't have to use all of them. The parser defaults to null values if a column is absent.

  'ipv4',
  'hostname',
  'os_name',
  'port',
  'state',
  'protocol',
  'service',
  'software_banner',
  'version',
  'cpe',
  'other_info'

Example:

ipv4,hostname,os_name,port,state,protocol,service,software_banner
10.251.53.100,internal.delvesecurity.com,Linux,110,open,tcp,rpcbind,"program version   port/proto  service100000  2,3,4        111/tcp  rpcbind100000  2,3,4    "
10.251.53.100,internal.delvesecurity.com,Linux,111,open,tcp,rpcbind,
10.251.53.188,serious.delvesecurity.com,Linux,6000,open,tcp,X11,"X11Probe: CentOS"

Outputing numerical representation

For the data scientist in you, or just for fun and profit, you can output the numerical matrix along with the score column instead of the regular output. This can be useful for further data analysis and debug purpose.

$ batea -oM network_matrix nmap_report.xml
Owner
Secureworks Taegis VDR
Automatically identify and prioritize vulnerabilities for intelligent remediation.
Secureworks Taegis VDR
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023