ONNX Command-Line Toolbox

Overview

ONNX Command Line Toolbox

Build and Test CodeQL Sanity Coverage

  • Aims to improve your experience of investigating ONNX models.
  • Use it like onnx infershape /path/to/model.onnx. (See the usage section for more.)

Installation

Recommand to install via GitHub repo for the latest functionality.

pip install git+https://github.com/jackwish/onnxcli.git

Two alternative ways are:

  1. Install via pypi package pip install onnxcli
  2. Download and add the code tree to your $PYTHONPATH. This is for development purpose since the command line is different.
    git clone https://github.com/jackwish/onnxcli.git
    export PYTHONPATH=$(pwd)/onnxcli:${PYTHONPATH}
    python onnxcli/cli/dispatcher.py <more args>
    

The onnx draw requires dot command (graphviz) to be avaiable on your machine - which can be installed by command as below on Ubuntu/Debian.

sudo apt install -y graphviz

Usage

Once installed, the onnx and onnxcli commands are avaiable on your machine. You can play with commands such as onnx infershape /path/to/model.onnx. The general format is onnx <sub command> <dedicated arguments ...>. The sub commands are as sections below.

Check the online help with onnx --help and onnx <subcmd> --help for latest usage.

infershape

onnx infershape performs shape inference of the ONNX model. It's an CLI wrapper of onnx.shape_inference. You will find it useful to generate shape information for the models that are extracted by onnx extract.

extract

onnx extract extracts the sub model that is determined by the names of the input and output tensor of the subgraph from the original model. It's a CLI wrapper of onnx.utils.extract_model (which I authorized in the ONNX repo).

inspect

onnx inspect gives you quick view of the information of the given model. It's inspired by the tf-onnx tool.

When working on deep learning, you may like to take a look at what's inside the model. Netron is powerful but doesn't provide fine-grain view.

With onnx inspect, you no longer need to scroll the Netron window to look for nodes or tensors. Instead, you can dump the node attributes and tensor values with a single command.

Click here to see a node example

$ onnx inspect ./assets/tests/conv.float32.onnx --node --indices 0 --detail

Inpect of model ./assets/tests/conv.float32.onnx Graph name: 9 Graph inputs: 1 Graph outputs: 1 Nodes in total: 1 ValueInfo in total: 2 Initializers in total: 2 Sparse Initializers in total: 0 Quantization in total: 0

Node information: Node "output": type "Conv", inputs "['input', 'Variable/read', 'Conv2D_bias']", outputs "['output']" attributes: [name: "dilations" ints: 1 ints: 1 type: INTS , name: "group" i: 1 type: INT , name: "kernel_shape" ints: 3 ints: 3 type: INTS , name: "pads" ints: 1 ints: 1 ints: 1 ints: 1 type: INTS , name: "strides" ints: 1 ints: 1 type: INTS ]

Click here to see a tensor example

$ onnx inspect ./assets/tests/conv.float32.onnx --tensor --names Conv2D_bias --detail

Inpect of model ./assets/tests/conv.float32.onnx Graph name: 9 Graph inputs: 1 Graph outputs: 1 Nodes in total: 1 ValueInfo in total: 2 Initializers in total: 2 Sparse Initializers in total: 0 Quantization in total: 0

Tensor information: Initializer "Conv2D_bias": type FLOAT, shape [16], float data: [0.4517577290534973, -0.014192663133144379, 0.2946248948574066, -0.9742919206619263, -1.2975586652755737, 0.7223454117774963, 0.7835700511932373, 1.7674627304077148, 1.7242872714996338, 1.1230682134628296, -0.2902531623840332, 0.2627834975719452, 1.0175092220306396, 0.5643373131752014, -0.8244842290878296, 1.2169424295425415]

draw

onnx draw draws the graph in dot, svg, png formats. It gives you quick view of the type and shape of the tensors that are fed to a specific node. You can view the model topology in image viewer of browser without waiting for the model to load, which I found is really helpful for large models.

If you are viewing svg in browser, you can even quick search for the nodes and tensors. Together with onnx inspect, it will be very efficient to understand the issue you are looking into.

The node are in ellipses and tensors are in rectangles where the rounded ones are initializers. The node type of the node and the data type and shape of the tenors are also rendered. Here is a Convolution node example.

conv

Contributing

Welcome to contribute new commands or enhance them. Let's make our life easier together.

The workflow is pretty simple:

  1. Starting with GitHub Codespace or clone locally.
  • make setup to config the dependencies (or pip install -r ./requirements.txt if you prefer).
  1. Create a new subcommand
  • Starting by copying and modifying infershape.
  • Register the command in the dispatcher
  • Create a new command line test
  • make test to build and test.
  • make check and make format to fix any code style issues.
  1. Try out, debug, commit, push, and open pull request.
  • The code has been protected by CI. You need to get a pass before merging.
  • Ask if any questions.

License

Apache License Version 2.0.

Comments
  • Some ONNX models don't list activation tensors in GraphProto.value_info

    Some ONNX models don't list activation tensors in GraphProto.value_info

    They should, but they don't. I am not sure why such models behave like this - they cannot pass the ONNX model checker.

    There should be something wrong with the exporter. I can try to figure out which exporter has such issues.

    For onnxcli, any functionality depending on walking GraphProto.value_info may not show the real model. This is not our defect, but the models'. To workaround, you can firstly run shape inference on the model, and the GraphProto.value_info listing issue will be fixed.

    onnx infershape /path/to/input/model /path/to/output/model
    
    documentation 
    opened by zhenhuaw-me 2
  • Integrate the onnx dumper

    Integrate the onnx dumper

    src: https://github.com/onnx/tensorflow-onnx/blob/master/tools/dump-onnx.py

    most of them need to be renamed.

    • [x] inspect to check the model
    • [x] dump dot has high priotiry
    • [ ] print to std if no file specified
    opened by zhenhuaw-me 0
  • Optimizer reports

    Optimizer reports "Unresolved value references" since v0.3.0

    Via pipeline https://github.com/zhenhuaw-me/onnxcli/actions/runs/3453474851/jobs/5764096907.

    A simple model works no issue till optimizer v0.2.7 (verified locally), but starts to fail with optimizer v0.3.0 (verified locally) and still fail with v0.3.2 (the pipeline).

    It's onnx optimize ./assets/tests/conv.float32.onnx optimized.onnx.

    opened by zhenhuaw-me 2
  • Overwrite weights (initializers) with fixed data or random data

    Overwrite weights (initializers) with fixed data or random data

    Bert series ONNX models are very large (x GB) thus not easy to share the real file. We can improve this process by overwriting the weights (initializers)

    • It can be fixed data (e.g. all 0.1 or other value specified), thus the model can be compressed.
    • After sharing, we can recover with numpy style random numbers.

    This can only be used as a sharing method, the generated model are not useful when evaluate accuracy.

    For better usage:

    • Annotation will be added when writing fixed data, thus when re-random we can detect automatically.
    • The tensors can be specified with names or size.
    • Only works for FP32/FP16.
    • 0 removed.
    enhancement 
    opened by zhenhuaw-me 0
  • [draw] show tensor information on the edges

    [draw] show tensor information on the edges

    We currently draw tensors as boxes and operators as circles.

    image

    The graph will be complex if large model. We draw the tensor information on the edges and keep only operators as nodes.

    enhancement 
    opened by zhenhuaw-me 0
  • [infershape] should be able to set tensor shapes - inputs and others

    [infershape] should be able to set tensor shapes - inputs and others

    infershape is not very useful if the input shapes are symbolics (dynamic shapes). If the user can set input shapes, it's more powerful:

    • If set to static shapes, the shape of the model will be known.
    • Even for symbolics, the user can update the input shapes.

    The setup should be optional, and can extend to all the tensors in the model (excluding shape op related).

    Interface should be something like below.

    onnx infershape path/to/input/model.onnx path/to/output/model.onnx --tensor-shape t1:[d0,d1] t2:[d0,d1,d3]
    
    enhancement 
    opened by zhenhuaw-me 0
  • Extract should be able to skip the input tensor names

    Extract should be able to skip the input tensor names

    We should be able to walk the graph starting with the output tensor names and auto infer the input names if not given.

    It would be interesting to figure out if the user provided input tensor names and output tensor names don't cut a subgraph.

    enhancement 
    opened by zhenhuaw-me 0
Releases(v0.2.1)
  • v0.2.1(Nov 13, 2022)

    What's Changed

    • Ping onnxoptimizer to 0.2.7 due to "Unresolved value references" issue. See more in https://github.com/zhenhuaw-me/onnxcli/issues/28
    • convert: enable onnx to json by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/10
    • inspect: print input and output tensor too by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/12
    • inspect: dump input output tensor by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/14
    • inspect: show dimension name instead of value if has any by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/17
    • draw: gen tensor info for tensors that only have name by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/18
    • setup: install the dependent python packages by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/19
    • Check command by @zhenhuaw-me in https://github.com/zhenhuaw-me/onnxcli/pull/21

    Full Changelog: https://github.com/zhenhuaw-me/onnxcli/compare/v0.2.0...v0.2.1

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jan 8, 2022)

  • v0.1.0(Dec 24, 2021)

Owner
黎明灰烬 (王振华 Zhenhua WANG)
A b[i|y]te of ML.sys|Arch|VM.
黎明灰烬 (王振华 Zhenhua WANG)
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022