StyleSwin: Transformer-based GAN for High-resolution Image Generation

Overview

StyleSwin

Teaser

This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation".

By Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong Chen, Fang Wen, Yong Wang and Baining Guo.

Code and pretrained models will be released soon. Please stay tuned.

Abstract

Despite the tantalizing success in a broad of vision tasks, transformers have not yet demonstrated on-par ability as ConvNets in high-resolution image generative modeling. In this paper, we seek to explore using pure transformers to build a generative adversarial network for high-resolution image synthesis. To this end, we believe that local attention is crucial to strike the balance between computational efficiency and modeling capacity. Hence, the proposed generator adopts Swin transformer in a style-based architecture. To achieve a larger receptive field, we propose double attention which simultaneously leverages the context of the local and the shifted windows, leading to improved generation quality. Moreover, we show that offering the knowledge of the absolute position that has been lost in window-based transformers greatly benefits the generation quality. The proposed StyleSwin is scalable to high resolutions, with both the coarse geometry and fine structures benefit from the strong expressivity of transformers. However, blocking artifacts occur during high-resolution synthesis because performing the local attention in a block-wise manner may break the spatial coherency. To solve this, we empirically investigate various solutions, among which we find that employing a wavelet discriminator to examine the spectral discrepancy effectively suppresses the artifacts. Extensive experiments show the superiority over prior transformer-based GANs, especially on high resolutions, e.g., 1024x1024. The StyleSwin, without complex training strategies, excels over StyleGAN on CelebA-HQ 1024x1024, and achieves on-par performance on FFHQ 1024x1024, proving the promise of using transformers for high-resolution image generation.

Main Results

Quantitative Results

Dataset Resolution FID Pretrained Model
FFHQ 256x256 2.81 -
LSUN Church 256x256 3.10 -
CelebA-HQ 256x256 3.25 -
FFHQ 1024x1024 5.07 -
CelebA-HQ 1024x1024 4.43 -

Qualitative Results

Image samples of FFHQ-1024 generated by StyleSwin:

Image samples of CelebA-HQ 1024 generated by StyleSwin:

Latent code interpolation examples of FFHQ-1024 between the left-most and the right-most images:

Citing StyleSwin

@misc{zhang2021styleswin,
      title={StyleSwin: Transformer-based GAN for High-resolution Image Generation}, 
      author={Bowen Zhang and Shuyang Gu and Bo Zhang and Jianmin Bao and Dong Chen and Fang Wen and Yong Wang and Baining Guo},
      year={2021},
      eprint={2112.10762},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Maintenance

This is the codebase for our research work. Please open a GitHub issue for any help. If you have any questions regarding the technical details, feel free to contact [email protected] or [email protected].

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file. We use our labeled dataset to train the scratch detection model.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022