Additional environments compatible with OpenAI gym

Overview

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning

A codebase for training reinforcement learning policies for quadrotor swarms. Includes:

Paper: https://arxiv.org/abs/2109.07735

Website: https://sites.google.com/view/swarm-rl

Installation

Initialize a Python environment, i.e. with conda (Python versions 3.6-3.8 are supported):

conda create -n swarm-rl python=3.8
conda activate swarm-rl

Clone and install this repo as an editable Pip package:

git clone https://github.com/alex-petrenko/quad-swarm-rl
cd quad-swarm-rl
pip install -e .

This should pull and install all the necessary dependencies, including Sample Factory and PyTorch.

Running experiments

Train

This will run the baseline experiment. Change the number of workers appropriately to match the number of logical CPU cores on your machine, but it is advised that the total number of simulated environments is close to that in the original command:

python -m swarm_rl.train --env=quadrotor_multi --train_for_env_steps=1000000000 --algo=APPO \
--use_rnn=False \
--num_workers=36 --num_envs_per_worker=4 \
--learning_rate=0.0001 --ppo_clip_value=5.0 \
--recurrence=1 --nonlinearity=tanh --actor_critic_share_weights=False \
--policy_initialization=xavier_uniform --adaptive_stddev=False --with_vtrace=False \
--max_policy_lag=100000000 --hidden_size=256 --gae_lambda=1.00 --max_grad_norm=5.0 \
--exploration_loss_coeff=0.0 --rollout=128 --batch_size=1024 --quads_use_numba=True \
--quads_mode=mix --quads_episode_duration=15.0 --quads_formation_size=0.0 \
--encoder_custom=quad_multi_encoder --with_pbt=False --quads_collision_reward=5.0 \
--quads_neighbor_hidden_size=256 --neighbor_obs_type=pos_vel --quads_settle_reward=0.0 \
--quads_collision_hitbox_radius=2.0 --quads_collision_falloff_radius=4.0 --quads_local_obs=6 \
--quads_local_metric=dist --quads_local_coeff=1.0 --quads_num_agents=8 --quads_collision_reward=5.0 \
--quads_collision_smooth_max_penalty=10.0 --quads_neighbor_encoder_type=attention \
--replay_buffer_sample_prob=0.75 --anneal_collision_steps=300000000 --experiment=swarm_rl 

Or, even better, you can use the runner scripts in swarm_rl/runs/. Runner scripts (a Sample Factory feature) are Python files that contain experiment parameters, and support features such as evaluation on multiple seeds and gridsearches.

To execute a runner script run the following command:

python -m sample_factory.runner.run --run=swarm_rl.runs.quad_multi_mix_baseline_attn --runner=processes --max_parallel=4 --pause_between=1 --experiments_per_gpu=1 --num_gpus=4

This command will start training four different seeds in parallel on a 4-GPU server. Adjust the parameters accordingly to match your hardware setup.

To monitor the experiments, go to the experiment folder, and run the following command:

tensorboard --logdir=./

Test

To test the trained model, run the following command:

python -m swarm_rl.enjoy --algo=APPO --env=quadrotor_multi --replay_buffer_sample_prob=0 --continuous_actions_sample=False --quads_use_numba=False --train_dir=PATH_TO_PROJECT/swarm_rl/train_dir --experiments_root=EXPERIMENT_ROOT --experiment=EXPERIMENT_NAME

Unit Tests

To run unit tests:

./run_tests.sh
Owner
Zhehui Huang
Zhehui Huang
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Contextual Attention Network: Transformer Meets U-Net

Contextual Attention Network: Transformer Meets U-Net Contexual attention network for medical image segmentation with state of the art results on skin

Reza Azad 67 Nov 28, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022