A minimalist implementation of score-based diffusion model

Overview

sdeflow-light

This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper

"A Variational Perspective on Diffusion-Based Generative Models and Score Matching" by Chin-Wei Huang, Jae Hyun Lim and Aaron Courville [arXiv]

Also see the concurrent work by Yang Song & Conor Durkan where they used the same idea to obtain state-of-the-art likelihood estimates.

Experiments on Swissroll

Here's a Colab notebook which contains an example for training a model on the Swissroll dataset.

Open In Colab

In this notebook, you'll see how to train the model using score matching loss, how to evaluate the ELBO of the plug-in reverse SDE, and how to sample from it. It also includes a snippet to sample from a family of plug-in reverse SDEs (parameterized by λ) mentioned in Appendix C of the paper.

Below are the trajectories of λ=0 (the reverse SDE used in Song et al.) and λ=1 (equivalent ODE) when we plug in the learned score / drift function. This corresponds to Figure 5 of the paper. drawing drawing

Experiments on MNIST and CIFAR-10

This repository contains one main training loop (train_img.py). The model is trained to minimize the denoising score matching loss by calling the .dsm(x) loss function, and evaluated using the following ELBO, by calling .elbo_random_t_slice(x)

score-elbo

where the divergence (sum of the diagonal entries of the Jacobian) is estimated using the Hutchinson trace estimator.

It's a minimalist codebase in the sense that we do not use fancy optimizer (we only use Adam with the default setup) or learning rate scheduling. We use the modified U-net architecture from Denoising Diffusion Probabilistic Models by Jonathan Ho.

A key difference from Song et al. is that instead of parameterizing the score function s, here we parameterize the drift term a (where they are related by a=gs and g is the diffusion coefficient). That is, a is the U-net.

Parameterization: Our original generative & inference SDEs are

  • dX = mu dt + sigma dBt
  • dY = (-mu + sigma*a) ds + sigma dBs

We reparameterize it as

  • dX = (ga - f) dt + g dBt
  • dY = f ds + g dBs

by letting mu = ga - f, and sigma = g. (since f and g are fixed, we only have one degree of freedom, which is a). Alternatively, one can parameterize s (e.g. using the U-net), and just let a=gs.

How it works

Here's an example command line for running an experiment

python train_img.py --dataroot=[DATAROOT] --saveroot=[SAVEROOT] --expname=[EXPNAME] \
    --dataset=cifar --print_every=2000 --sample_every=2000 --checkpoint_every=2000 --num_steps=1000 \
    --batch_size=128 --lr=0.0001 --num_iterations=100000 --real=True --debias=False

Setting --debias to be False uses uniform sampling for the time variable, whereas setting it to be True uses a non-uniform sampling strategy to debias the gradient estimate described in the paper. Below are the bits-per-dim and the corresponding standard error of the test set recorded during training (orange for --debias=True and blue for --debias=False).

drawing drawing

Here are some samples (debiased on the right)

drawing drawing

It takes about 14 hrs to finish 100k iterations on a V100 GPU.

Owner
Chin-Wei Huang
Chin-Wei Huang
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022