A minimalist implementation of score-based diffusion model

Overview

sdeflow-light

This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper

"A Variational Perspective on Diffusion-Based Generative Models and Score Matching" by Chin-Wei Huang, Jae Hyun Lim and Aaron Courville [arXiv]

Also see the concurrent work by Yang Song & Conor Durkan where they used the same idea to obtain state-of-the-art likelihood estimates.

Experiments on Swissroll

Here's a Colab notebook which contains an example for training a model on the Swissroll dataset.

Open In Colab

In this notebook, you'll see how to train the model using score matching loss, how to evaluate the ELBO of the plug-in reverse SDE, and how to sample from it. It also includes a snippet to sample from a family of plug-in reverse SDEs (parameterized by λ) mentioned in Appendix C of the paper.

Below are the trajectories of λ=0 (the reverse SDE used in Song et al.) and λ=1 (equivalent ODE) when we plug in the learned score / drift function. This corresponds to Figure 5 of the paper. drawing drawing

Experiments on MNIST and CIFAR-10

This repository contains one main training loop (train_img.py). The model is trained to minimize the denoising score matching loss by calling the .dsm(x) loss function, and evaluated using the following ELBO, by calling .elbo_random_t_slice(x)

score-elbo

where the divergence (sum of the diagonal entries of the Jacobian) is estimated using the Hutchinson trace estimator.

It's a minimalist codebase in the sense that we do not use fancy optimizer (we only use Adam with the default setup) or learning rate scheduling. We use the modified U-net architecture from Denoising Diffusion Probabilistic Models by Jonathan Ho.

A key difference from Song et al. is that instead of parameterizing the score function s, here we parameterize the drift term a (where they are related by a=gs and g is the diffusion coefficient). That is, a is the U-net.

Parameterization: Our original generative & inference SDEs are

  • dX = mu dt + sigma dBt
  • dY = (-mu + sigma*a) ds + sigma dBs

We reparameterize it as

  • dX = (ga - f) dt + g dBt
  • dY = f ds + g dBs

by letting mu = ga - f, and sigma = g. (since f and g are fixed, we only have one degree of freedom, which is a). Alternatively, one can parameterize s (e.g. using the U-net), and just let a=gs.

How it works

Here's an example command line for running an experiment

python train_img.py --dataroot=[DATAROOT] --saveroot=[SAVEROOT] --expname=[EXPNAME] \
    --dataset=cifar --print_every=2000 --sample_every=2000 --checkpoint_every=2000 --num_steps=1000 \
    --batch_size=128 --lr=0.0001 --num_iterations=100000 --real=True --debias=False

Setting --debias to be False uses uniform sampling for the time variable, whereas setting it to be True uses a non-uniform sampling strategy to debias the gradient estimate described in the paper. Below are the bits-per-dim and the corresponding standard error of the test set recorded during training (orange for --debias=True and blue for --debias=False).

drawing drawing

Here are some samples (debiased on the right)

drawing drawing

It takes about 14 hrs to finish 100k iterations on a V100 GPU.

Owner
Chin-Wei Huang
Chin-Wei Huang
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
Anime Face Detector using mmdet and mmpose

Anime Face Detector This is an anime face detector using mmdetection and mmpose. (To avoid copyright issues, I use generated images by the TADNE model

198 Jan 07, 2023
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022