ScaleNet: A Shallow Architecture for Scale Estimation

Related tags

Deep LearningScaleNet
Overview

ScaleNet: A Shallow Architecture for Scale Estimation

Repository for the code of ScaleNet paper:

"ScaleNet: A Shallow Architecture for Scale Estimation".
Axel Barroso-Laguna, Yurun Tian, and Krystian Mikolajczyk. arxiv 2021.

[Paper on arxiv]

Prerequisite

Python 3.7 is required for running and training ScaleNet code. Use Conda to install the dependencies:

conda create --name scalenet_env
conda activate scalenet_env 
conda install pytorch==1.2.0 -c pytorch
conda install -c conda-forge tensorboardx opencv tqdm 
conda install -c anaconda pandas 
conda install -c pytorch torchvision 

Scale estimation

run_scalenet.py can be used to estimate the scale factor between two input images. We provide as an example two images, im1.jpg and im2.jpg, within the assets/im_test folder as an example. For a quick test, please run:

python run_scalenet.py --im1_path assets/im_test/im1.jpg --im2_path assets/im_test/im2.jpg

Arguments:

  • im1_path: Path to image A.
  • im2_path: Path to image B.

It returns the scale factor A->B.

Training ScaleNet

We provide a list of Megadepth image pairs and scale factors in the assets folder. We use the undistorted images, corresponding camera intrinsics, and extrinsics preprocessed by D2-Net. You can download them directly from their main repository. If you desire to use the default configuration for training, just run the following line:

python train_ScaleNet.py --image_data_path /path/to/megadepth_d2net

There are though some important arguments to take into account when training ScaleNet.

Arguments:

  • image_data_path: Path to the undistorted Megadepth images from D2-Net.
  • save_processed_im: ScaleNet processes the images so that they are center-cropped and resized to a default resolution. We give the option to store the processed images and load them during training, which results in a much faster training. However, the size of the files can be big, and hence, we suggest storing them in a large storage disk. Default: True.
  • root_precomputed_files: Path to save the processed image pairs.

If you desire to modify ScaleNet training or architecture, look for all the arguments in the train_ScaleNet.py script.

Test ScaleNet - camera pose

In addition to the training, we also provide a template for testing ScaleNet in the camera pose task. In assets/data/test.csv, you can find the test Megadepth pairs, along with their scale change as well as their camera poses.

Run the following command to test ScaleNet + SIFT in our custom camera pose split:

python test_camera_pose.py --image_data_path /path/to/megadepth_d2net

camera_pose.py script is intended to provide a structure of our camera pose experiment. You can change either the local feature extractor or the scale estimator and obtain your camera pose results.

BibTeX

If you use this code or the provided training/testing pairs in your research, please cite our paper:

@InProceedings{Barroso-Laguna2021_scale,
    author = {Barroso-Laguna, Axel and Tian, Yurun and Mikolajczyk, Krystian},
    title = {{ScaleNet: A Shallow Architecture for Scale Estimation}},
    booktitle = {Arxiv: },
    year = {2021},
}
Owner
Axel Barroso
Computer Vision PhD Student
Axel Barroso
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022