Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Overview

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Notes

  • I probably still left some absolute path in the project. When running a script, please check the paths used for loading dataset, saving models and etc.

Repo Structure

The section contains the structure graph of this project and some simple descriptions of folders

  • For more detailed description of each script, please refer to the README inside each folder.

  • Every item with . extension is a file/script. Items without . extension are folders.

  • Folders like dataset, models, backup are not actually empty. But because they usually hold fairly large files/datasets I decided to not upload the content directly to github (.gitignore are left in those folders as placeholders). Please contact me directly if you need those files.

│   env.yml: environment file (under Windows 10) for Conda. Use this to generate a working environment
│
├───evsi: scripts/data related to EVSI portion of this project
│   │   get_EVSI.ipynb
│   │   get_models.ipynb
│   │   ranking_and_correlation.ipynb
│   │   sensitivity_analysis.ipynb
│   │   training_and_evsi_fs.ipynb
│   │
│   ├───backup: results of each run of `training_and_evsi_fs.ipynb`.
│   ├───dataset: raw data of the TE dataset
│   ├───log: relevant metrics generated after the current run
│   │       acc.csv
│   │       acc_improvement.csv
│   │       sensitivity_analysis.csv
│   │       sensor_selection.csv
│   │
│   └───models: frozen LSTM models saved after the current run
│       ├───evsi: models trained for EVSI purpose
│       └───ml: models trained for forward stepwise selection purpose
|
└───ml
    │   LSTM_RandomForest.ipynb
    │   LSTM_workflow.ipynb
    │   README.md
    │   visulization.ipynb
    │
    ├───dataset: raw data of the TE dataset
    ├───models: frozen LSTM models that are used to pick the top 10 impactful features
    └───plots: plots generated to demonstrate the 10 most impactful features
            test_advantage.png
            validation_advantage.png

Dataset

The dataset used in this project is the Tennessee Eastman Process Simulation Data presented here

More Info

For more information about this project, for example, the structure of the dataset, please refer to this document

Owner
Berkeley Expert System Technologies Lab
Berkeley Expert System Technologies Lab
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022