Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Overview

Temporal copying and local hallucination for video inpainting

This repository contains the implementation of my master's thesis "Temporal copying and local hallucination for video inpainting". The code has been built using PyTorch Lightning, read its documentation to get a complete overview of how this repository is structured.

Disclaimer: The version published here might contain small differences with the thesis because of the refactoring.

About the data

The thesis uses three different datasets: GOT-10k for the background sequences, YouTube-VOS for realistic mask shapes and DAVIS to test the models with real masked sequences. Some pre-processing steps, which are not published in this repository, have been applied to the data. You can download the exact datasets used in the paper from this link.

The first step is to clone this repository, install its dependencies and other required system packages:

git clone https://github.com/davidalvarezdlt/master_thesis.git
cd master_thesis
pip install -r requirements.txt

apt-get update
apt-get install libturbojpeg ffmpeg libsm6 libxext6

Unzip the file downloaded from the previous link inside ./data. The resulting folder structure should look like this:

master_thesis/
    data/
        DAVIS-2017/
        GOT10k/
        YouTubeVOS/
    lightning_logs/
    master_thesis/
    .gitignore
    .pre-commit-config.yaml
    LICENSE
    README.md
    requirements.txt

Training the Dense Flow Prediction Network (DFPN) model

In short, you can train the model by calling:

python -m master_thesis

You can modify the default parameters of the code by using CLI parameters. Get a complete list of the available parameters by calling:

python -m master_thesis --help

For instance, if we want to train the model using 2 frames, with a batch size of 8 and using one GPUs, we would call:

python -m master_thesis --frames_n 2 --batch_size 8 --gpus 1

Every time you train the model, a new folder inside ./lightning_logs will be created. Each folder represents a different version of the model, containing its checkpoints and auxiliary files.

Training the Copy-and-Hallucinate Network (CHN) model

In this case, you will need to specify that you want to train the CHN model. To do so:

python -m master_thesis --chn --chn_aligner <chn_aligner> --chn_aligner_checkpoint <chn_aligner_checkpoint>

Where --chn_aligner is the model used to align the frames (either cpn or dfpn) and --chn_aligner_checkpoint is the path to its checkpoint.

You can download the checkpoint of the CPN from its original repository (file named weight.pth).

Testing the Dense Flow Prediction Network (DFPN) model

You can align samples from the test split and store them in TensorBoard by calling:

python -m samplernn_pase --test --test_checkpoint <test_checkpoint>

Where --test_checkpoint is a valid path to the model checkpoint that should be used.

Testing the Copy-and-Hallucinate Network (CHN) model

You can inpaint test sequences (they will be stored in a folder) using the three algorithms by calling:

python -m master_thesis --chn --chn_aligner <chn_aligner> --chn_aligner_checkpoint <chn_aligner_checkpoint> --test --test_checkpoint <test_checkpoint>

Notice that now the value of --test_checkpoint must be a valid path to a CHN checkpoint, while --chn_aligner_checkpoint might be the path to a checkpoint of either CPN or DFPN.

Citation

If you find this thesis useful, please use the following citation:

@thesis{Alvarez2020,
    type = {Master's Thesis},
    author = {David Álvarez de la Torre},
    title = {Temporal copying and local hallucination for video onpainting},
    school = {ETH Zürich},
    year = 2020,
}
Owner
David Álvarez de la Torre
Founder of @lemonplot. Alumni of UPC and ETH.
David Álvarez de la Torre
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023