Parametric Contrastive Learning (ICCV2021)

Overview

Parametric-Contrastive-Learning

This repository contains the implementation code for ICCV2021 paper:
Parametric Contrastive Learning (https://arxiv.org/abs/2107.12028)

PWC

PWC

PWC

If you find this code or idea useful, please consider citing our work:

@misc{cui2021parametric,
      title={Parametric Contrastive Learning}, 
      author={Jiequan Cui and Zhisheng Zhong and Shu Liu and Bei Yu and Jiaya Jia},
      year={2021},
      eprint={2107.12028},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Overview

In this paper, we propose Parametric Contrastive Learning (PaCo) to tackle long-tailed recognition. Based on theoretical analysis, we observe supervised contrastive loss tends to bias on high-frequency classes and thus increases the difficulty of imbalance learning. We introduce a set of parametric class-wise learnable centers to rebalance from an optimization perspective. Further, we analyze our PaCo loss under a balanced setting. Our analysis demonstrates that PaCo can adaptively enhance the intensity of pushing samples of the same class close as more samples are pulled together with their corresponding centers and benefit hard example learning. Experiments on long-tailed CIFAR, ImageNet, Places, and iNaturalist 2018 manifest the new state-of-the-art for long-tailed recognition. On full ImageNet, models trained with PaCo loss surpass supervised contrastive learning across various ResNet backbones.

Results and Pretrained models

Full ImageNet (Balanced setting)

Method Model Top-1 Acc(%) link log
PaCo ResNet-50 79.3 download download
PaCo ResNet-101 80.9 download download
PaCo ResNet-200 81.8 download download

ImageNet-LT (Imbalance setting)

Method Model Top-1 Acc(%) link log
PaCo ResNet-50 57.0 download download
PaCo ResNeXt-50 58.2 download download
PaCo ResNeXt-101 60.0 download download

iNaturalist 2018 (Imbalanced setting)

Method Model Top-1 Acc(%) link log
PaCo ResNet-50 73.2 download download
PaCo ResNet-152 75.2 download download

Places-LT (Imbalanced setting)

Method Model Top-1 Acc(%) link log
PaCo ResNet-152 41.2 download download

Get Started

For full ImageNet, ImageNet-LT, iNaturalist 2018, Places-LT training and evaluation. Note that PyTorch>=1.6. All experiments are conducted on 4 GPUs. If you have more GPU resources, please make sure that the learning rate should be linearly scaled and 32 images per gpu is recommented.

cd Full-ImageNet
bash sh/train_resnet50.sh
bash sh/eval_resnet50.sh

cd LT
bash sh/ImageNetLT_train_R50.sh
bash sh/ImageNetLT_eval_R50.sh
bash sh/PlacesLT_train_R152.sh
bash sh/PlacesLT_eval_R152.sh

Contact

If you have any questions, feel free to contact us through email ([email protected]) or Github issues. Enjoy!

Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022