Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

Related tags

Deep LearningDAFormer
Overview

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

[Arxiv] [Paper]

As acquiring pixel-wise annotations of real-world images for semantic segmentation is a costly process, a model can instead be trained with more accessible synthetic data and adapted to real images without requiring their annotations. This process is studied in Unsupervised Domain Adaptation (UDA).

Even though a large number of methods propose new UDA strategies, they are mostly based on outdated network architectures. In this work, we particularly study the influence of the network architecture on UDA performance and propose DAFormer, a network architecture tailored for UDA. It consists of a Transformer encoder and a multi-level context-aware feature fusion decoder.

DAFormer is enabled by three simple but crucial training strategies to stabilize the training and to avoid overfitting the source domain: While the Rare Class Sampling on the source domain improves the quality of pseudo-labels by mitigating the confirmation bias of self-training towards common classes, the Thing-Class ImageNet Feature Distance and a Learning Rate Warmup promote feature transfer from ImageNet pretraining.

DAFormer significantly improves the state-of-the-art performance by 10.8 mIoU for GTA→Cityscapes and by 5.4 mIoU for Synthia→Cityscapes and enables learning even difficult classes such as train, bus, and truck well.

UDA over time

The strengths of DAFormer, compared to the previous state-of-the-art UDA method ProDA, can also be observed in qualitative examples from the Cityscapes validation set.

Demo Color Palette

For more information on DAFormer, please check our [Paper].

If you find this project useful in your research, please consider citing:

@article{hoyer2021daformer,
  title={DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation},
  author={Hoyer, Lukas and Dai, Dengxin and Van Gool, Luc},
  journal={arXiv preprint arXiv:2111.14887},
  year={2021}
}

Setup Environment

For this project, we used python 3.8.5. We recommend setting up a new virtual environment:

python -m venv ~/venv/daformer
source ~/venv/daformer/bin/activate

In that environment, the requirements can be installed with:

pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.3.7  # requires the other packages to be installed first

Further, please download the MiT weights and a pretrained DAFormer using the following script. If problems occur with the automatic download, please follow the instructions for a manual download within the script.

sh tools/download_checkpoints.sh

All experiments were executed on a NVIDIA RTX 2080 Ti.

Inference Demo

Already as this point, the provided DAFormer model (downloaded by tools/download_checkpoints.sh) can be applied to a demo image:

python -m demo.image_demo demo/demo.png work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/211108_1622_gta2cs_daformer_s0_7f24c.json work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/latest.pth

When judging the predictions, please keep in mind that DAFormer had no access to real-world labels during the training.

Setup Datasets

Cityscapes: Please, download leftImg8bit_trainvaltest.zip and gt_trainvaltest.zip from here and extract them to data/cityscapes.

GTA: Please, download all image and label packages from here and extract them to data/gta.

Synthia: Please, download SYNTHIA-RAND-CITYSCAPES from here and extract it to data/synthia.

The final folder structure should look like this:

DAFormer
├── ...
├── data
│   ├── cityscapes
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── gta
│   │   ├── images
│   │   ├── labels
│   ├── synthia
│   │   ├── RGB
│   │   ├── GT
│   │   │   ├── LABELS
├── ...

Data Preprocessing: Finally, please run the following scripts to convert the label IDs to the train IDs and to generate the class index for RCS:

python tools/convert_datasets/gta.py data/gta --nproc 8
python tools/convert_datasets/cityscapes.py data/cityscapes --nproc 8
python tools/convert_datasets/synthia.py data/synthia/ --nproc 8

Training

For convenience, we provide an annotated config file of the final DAFormer. A training job can be launched using:

python run_experiments.py --config configs/daformer/gta2cs_uda_warm_fdthings_rcs_croppl_a999_daformer_mitb5_s0.py

For the experiments in our paper (e.g. network architecture comparison, component ablations, ...), we use a system to automatically generate and train the configs:

python run_experimenty.py --exp <ID>

More information about the available experiments and their assigned IDs, can be found in experiments.py. The generated configs will be stored in configs/generated/.

Testing & Predictions

The provided DAFormer checkpoint trained on GTA->Cityscapes (already downloaded by tools/download_checkpoints.sh) can be tested on the Cityscapes validation set using:

sh test.sh work_dirs/211108_1622_gta2cs_daformer_s0_7f24c

The predictions are saved for inspection to work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/preds and the mIoU of the model is printed to the console. The provided checkpoint should achieve 68.85 mIoU. Refer to the end of work_dirs/211108_1622_gta2cs_daformer_s0_7f24c/20211108_164105.log for more information such as the class-wise IoU.

Similarly, also other models can be tested after the training has finished:

sh test.sh path/to/checkpoint_directory

Framework Structure

This project is based on mmsegmentation version 0.16.0. For more information about the framework structure and the config system, please refer to the mmsegmentation documentation and the mmcv documentation.

The most relevant files for DAFormer are:

Acknowledgements

This project is based on the following open-source projects. We thank their authors for making the source code publically available.

Owner
Lukas Hoyer
Doctoral student at ETH Zurich
Lukas Hoyer
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022