CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overview

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax

⚠️ Latest: Current repo is a complete version. But we delete many redundant codes and are still under testing now.

This repo is the official implementation for CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax. [Paper] [Supp] [Slides] [Video] [Code and models]

Note: Current code is still not very clean yet. We are still working on it, and it will be updated soon.

Framework

Requirements

1. Environment:

The requirements are exactly the same as mmdetection v1.0.rc0. We tested on on the following settings:

  • python 3.7
  • cuda 9.2
  • pytorch 1.3.1+cu92
  • torchvision 0.4.2+cu92
  • mmcv 0.2.14
HH=`pwd`
conda create -n mmdet python=3.7 -y
conda activate mmdet

pip install cython
pip install numpy
pip install torch
pip install torchvision
pip install pycocotools
pip install mmcv
pip install matplotlib
pip install terminaltables

cd lvis-api/
python setup.py develop

cd $HH
python setup.py develop

2. Data:

a. For dataset images:

# Make sure you are in dir BalancedGroupSoftmax

mkdir data
cd data
mkdir lvis
mkdir pretrained_models
  • If you already have COCO2017 dataset, it will be great. Link train2017 and val2017 folders under folder lvis.
  • If you do not have COCO2017 dataset, please download: COCO train set and COCO val set and unzip these files and mv them under folder lvis.

b. For dataset annotations:

To train HTC models, download COCO stuff annotations and change the name of folder stuffthingmaps_trainval2017 to stuffthingmaps.

c. For pretrained models:

Download the corresponding pre-trained models below.

  • To train baseline models, we need models trained on COCO to initialize. Please download the corresponding COCO models at mmdetection model zoo.
  • To train balanced group softmax models (shorted as gs models), we need corresponding baseline models trained on LVIS to initialize and fix all parameters except for the last FC layer.
  • Move these model files to ./data/pretrained_models/

d. For intermediate files (for BAGS and reweight models only):

You can either donwnload or generate them before training and testing. Put them under ./data/lvis/.

  • BAGS models: label2binlabel.pt, pred_slice_with0.pt, valsplit.pkl
  • Re-weight models: cls_weight.pt, cls_weight_bours.pt
  • RFS models: class_to_imageid_and_inscount.pt

After all these operations, the folder data should be like this:

    data
    ├── lvis
    │   ├── lvis_v0.5_train.json
    │   ├── lvis_v0.5_val.json
    │   ├── stuffthingmaps (Optional, for HTC models only)
    │   ├── label2binlabel.pt (Optional, for GAGS models only)
    │   ├── ...... (Other intermidiate files)
    │   │   ├── train2017
    │   │   │   ├── 000000004134.png
    │   │   │   ├── 000000031817.png
    │   │   │   ├── ......
    │   │   └── val2017
    │   │       ├── 000000424162.png
    │   │       ├── 000000445999.png
    │   │       ├── ......
    │   ├── train2017
    │   │   ├── 000000100582.jpg
    │   │   ├── 000000102411.jpg
    │   │   ├── ......
    │   └── val2017
    │       ├── 000000062808.jpg
    │       ├── 000000119038.jpg
    │       ├── ......
    └── pretrained_models
        ├── faster_rcnn_r50_fpn_2x_20181010-443129e1.pth
        ├── ......

Training

Note: Please make sure that you have prepared the pre-trained models and intermediate files and they have been put to the path specified in ${CONIFG_FILE}.

Use the following commands to train a model.

# Single GPU
python tools/train.py ${CONFIG_FILE}

# Multi GPU distributed training
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

All config files are under ./configs/.

  • ./configs/bags: all models for Balanced Group Softmax.
  • ./configs/baselines: all baseline models.
  • ./configs/transferred: transferred models from long-tail image classification.
  • ./configs/ablations: models for ablation study.

For example, to train a BAGS model with Faster R-CNN R50-FPN:

# Single GPU
python tools/train.py configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py

# Multi GPU distributed training (for 8 gpus)
./tools/dist_train.sh configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py 8

Important: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16). According to the Linear Scaling Rule, you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu. (Cited from mmdetection.)

Testing

Note: Please make sure that you have prepared the intermediate files and they have been put to the path specified in ${CONIFG_FILE}.

Use the following commands to test a trained model.

# single gpu test
python tools/test_lvis.py \
 ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

# multi-gpu testing
./tools/dist_test_lvis.sh \
 ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
  • $RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
  • $EVAL_METRICS: Items to be evaluated on the results. bbox for bounding box evaluation only. bbox segm for bounding box and mask evaluation.

For example (assume that you have downloaded the corresponding model file to ./data/downloaded_models):

  • To evaluate the trained BAGS model with Faster R-CNN R50-FPN for object detection:
# single-gpu testing
python tools/test_lvis.py configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py \
 ./donwloaded_models/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.pth \
  --out gs_box_result.pkl --eval bbox

# multi-gpu testing (8 gpus)
./tools/dist_test_lvis.sh configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py \
./donwloaded_models/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.pth 8 \
--out gs_box_result.pkl --eval bbox
  • To evaluate the trained BAGS model with Mask R-CNN R50-FPN for instance segmentation:
# single-gpu testing
python tools/test_lvis.py configs/bags/gs_mask_rcnn_r50_fpn_1x_lvis.py \
 ./donwloaded_models/gs_mask_rcnn_r50_fpn_1x_lvis.pth \
  --out gs_mask_result.pkl --eval bbox segm

# multi-gpu testing (8 gpus)
./tools/dist_test_lvis.sh configs/bags/gs_mask_rcnn_r50_fpn_1x_lvis.py \
./donwloaded_models/gs_mask_rcnn_r50_fpn_1x_lvis.pth 8 \
--out gs_mask_result.pkl --eval bbox segm

The evaluation results will be shown in markdown table format:

| Type | IoU | Area | MaxDets | CatIds | Result |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  (AP)  | 0.50:0.95 |    all | 300 |          all | 25.96% |
|  (AP)  | 0.50      |    all | 300 |          all | 43.58% |
|  (AP)  | 0.75      |    all | 300 |          all | 27.15% |
|  (AP)  | 0.50:0.95 |      s | 300 |          all | 20.26% |
|  (AP)  | 0.50:0.95 |      m | 300 |          all | 32.81% |
|  (AP)  | 0.50:0.95 |      l | 300 |          all | 40.10% |
|  (AP)  | 0.50:0.95 |    all | 300 |            r | 17.66% |
|  (AP)  | 0.50:0.95 |    all | 300 |            c | 25.75% |
|  (AP)  | 0.50:0.95 |    all | 300 |            f | 29.55% |
|  (AR)  | 0.50:0.95 |    all | 300 |          all | 34.76% |
|  (AR)  | 0.50:0.95 |      s | 300 |          all | 24.77% |
|  (AR)  | 0.50:0.95 |      m | 300 |          all | 41.50% |
|  (AR)  | 0.50:0.95 |      l | 300 |          all | 51.64% |

Results and models

The main results on LVIS val set:

LVIS val results

Models:

Please refer to our paper and supp for more details.

ID Models bbox mAP / mask mAP Train Test Config file Pretrained Model Train part Model
(1) Faster R50-FPN 20.98 file COCO R50 All Google drive
(2) x2 21.93 file Model (1) All Google drive
(3) Finetune tail 22.28 × file Model (1) All Google drive
(4) RFS 23.41 file COCO R50 All Google drive
(5) RFS-finetune 22.66 file Model (1) All Google drive
(6) Re-weight 23.48 file Model (1) All Google drive
(7) Re-weight-cls 24.66 file Model (1) Cls Google drive
(8) Focal loss 11.12 × file Model (1) All Google drive
(9) Focal loss-cls 19.29 × file Model (1) Cls Google drive
(10) NCM-fc 16.02 × × Model (1)
(11) NCM-conv 12.56 × × Model (1)
(12) $\tau$-norm 11.01 × × Model (1) Cls
(13) $\tau$-norm-select 21.61 × × Model (1) Cls
(14) Ours (Faster R50-FPN) 25.96 file Model (1) Cls Google drive
(15) Faster X101-64x4d 24.63 file COCO x101 All Google drive
(16) Ours (Faster X101-64x4d) 27.83 file Model (15) Cls Google drive
(17) Cascade X101-64x4d 27.16 file COCO cascade x101 All Google drive
(18) Ours (Cascade X101-64x4d) 32.77 file Model (17) Cls Google drive
(19) Mask R50-FPN 20.78/20.68 file COCO mask r50 All Google drive
(20) Ours (Mask R50-FPN) 25.76/26.25 file Model (19) Cls Google drive
(21) HTC X101-64x4d 31.28/29.28 file COCO HTC x101 All Google drive
(22) Ours (HTC X101-64x4d) 33.68/31.20 file Model (21) Cls Google drive
(23) HTC X101-64x4d-MS-DCN 34.61/31.94 file COCO HTC x101-ms-dcn All Google drive
(24) Ours (HTC X101-64x4d-MS-DCN) 37.71/34.39 file Model (23) Cls Google drive

PS: in column Pretrained Model, the file of Model (n) is the same as the Google drive file in column Model in row (n).

Citation

@inproceedings{li2020overcoming,
  title={Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax},
  author={Li, Yu and Wang, Tao and Kang, Bingyi and Tang, Sheng and Wang, Chunfeng and Li, Jintao and Feng, Jiashi},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10991--11000},
  year={2020}
}

Credit

This code is largely based on mmdetection v1.0.rc0 and LVIS API.

Owner
FishYuLi
happy
FishYuLi
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023