CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overview

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax

⚠️ Latest: Current repo is a complete version. But we delete many redundant codes and are still under testing now.

This repo is the official implementation for CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax. [Paper] [Supp] [Slides] [Video] [Code and models]

Note: Current code is still not very clean yet. We are still working on it, and it will be updated soon.

Framework

Requirements

1. Environment:

The requirements are exactly the same as mmdetection v1.0.rc0. We tested on on the following settings:

  • python 3.7
  • cuda 9.2
  • pytorch 1.3.1+cu92
  • torchvision 0.4.2+cu92
  • mmcv 0.2.14
HH=`pwd`
conda create -n mmdet python=3.7 -y
conda activate mmdet

pip install cython
pip install numpy
pip install torch
pip install torchvision
pip install pycocotools
pip install mmcv
pip install matplotlib
pip install terminaltables

cd lvis-api/
python setup.py develop

cd $HH
python setup.py develop

2. Data:

a. For dataset images:

# Make sure you are in dir BalancedGroupSoftmax

mkdir data
cd data
mkdir lvis
mkdir pretrained_models
  • If you already have COCO2017 dataset, it will be great. Link train2017 and val2017 folders under folder lvis.
  • If you do not have COCO2017 dataset, please download: COCO train set and COCO val set and unzip these files and mv them under folder lvis.

b. For dataset annotations:

To train HTC models, download COCO stuff annotations and change the name of folder stuffthingmaps_trainval2017 to stuffthingmaps.

c. For pretrained models:

Download the corresponding pre-trained models below.

  • To train baseline models, we need models trained on COCO to initialize. Please download the corresponding COCO models at mmdetection model zoo.
  • To train balanced group softmax models (shorted as gs models), we need corresponding baseline models trained on LVIS to initialize and fix all parameters except for the last FC layer.
  • Move these model files to ./data/pretrained_models/

d. For intermediate files (for BAGS and reweight models only):

You can either donwnload or generate them before training and testing. Put them under ./data/lvis/.

  • BAGS models: label2binlabel.pt, pred_slice_with0.pt, valsplit.pkl
  • Re-weight models: cls_weight.pt, cls_weight_bours.pt
  • RFS models: class_to_imageid_and_inscount.pt

After all these operations, the folder data should be like this:

    data
    ├── lvis
    │   ├── lvis_v0.5_train.json
    │   ├── lvis_v0.5_val.json
    │   ├── stuffthingmaps (Optional, for HTC models only)
    │   ├── label2binlabel.pt (Optional, for GAGS models only)
    │   ├── ...... (Other intermidiate files)
    │   │   ├── train2017
    │   │   │   ├── 000000004134.png
    │   │   │   ├── 000000031817.png
    │   │   │   ├── ......
    │   │   └── val2017
    │   │       ├── 000000424162.png
    │   │       ├── 000000445999.png
    │   │       ├── ......
    │   ├── train2017
    │   │   ├── 000000100582.jpg
    │   │   ├── 000000102411.jpg
    │   │   ├── ......
    │   └── val2017
    │       ├── 000000062808.jpg
    │       ├── 000000119038.jpg
    │       ├── ......
    └── pretrained_models
        ├── faster_rcnn_r50_fpn_2x_20181010-443129e1.pth
        ├── ......

Training

Note: Please make sure that you have prepared the pre-trained models and intermediate files and they have been put to the path specified in ${CONIFG_FILE}.

Use the following commands to train a model.

# Single GPU
python tools/train.py ${CONFIG_FILE}

# Multi GPU distributed training
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

All config files are under ./configs/.

  • ./configs/bags: all models for Balanced Group Softmax.
  • ./configs/baselines: all baseline models.
  • ./configs/transferred: transferred models from long-tail image classification.
  • ./configs/ablations: models for ablation study.

For example, to train a BAGS model with Faster R-CNN R50-FPN:

# Single GPU
python tools/train.py configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py

# Multi GPU distributed training (for 8 gpus)
./tools/dist_train.sh configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py 8

Important: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16). According to the Linear Scaling Rule, you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu. (Cited from mmdetection.)

Testing

Note: Please make sure that you have prepared the intermediate files and they have been put to the path specified in ${CONIFG_FILE}.

Use the following commands to test a trained model.

# single gpu test
python tools/test_lvis.py \
 ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

# multi-gpu testing
./tools/dist_test_lvis.sh \
 ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
  • $RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
  • $EVAL_METRICS: Items to be evaluated on the results. bbox for bounding box evaluation only. bbox segm for bounding box and mask evaluation.

For example (assume that you have downloaded the corresponding model file to ./data/downloaded_models):

  • To evaluate the trained BAGS model with Faster R-CNN R50-FPN for object detection:
# single-gpu testing
python tools/test_lvis.py configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py \
 ./donwloaded_models/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.pth \
  --out gs_box_result.pkl --eval bbox

# multi-gpu testing (8 gpus)
./tools/dist_test_lvis.sh configs/bags/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.py \
./donwloaded_models/gs_faster_rcnn_r50_fpn_1x_lvis_with0_bg8.pth 8 \
--out gs_box_result.pkl --eval bbox
  • To evaluate the trained BAGS model with Mask R-CNN R50-FPN for instance segmentation:
# single-gpu testing
python tools/test_lvis.py configs/bags/gs_mask_rcnn_r50_fpn_1x_lvis.py \
 ./donwloaded_models/gs_mask_rcnn_r50_fpn_1x_lvis.pth \
  --out gs_mask_result.pkl --eval bbox segm

# multi-gpu testing (8 gpus)
./tools/dist_test_lvis.sh configs/bags/gs_mask_rcnn_r50_fpn_1x_lvis.py \
./donwloaded_models/gs_mask_rcnn_r50_fpn_1x_lvis.pth 8 \
--out gs_mask_result.pkl --eval bbox segm

The evaluation results will be shown in markdown table format:

| Type | IoU | Area | MaxDets | CatIds | Result |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  (AP)  | 0.50:0.95 |    all | 300 |          all | 25.96% |
|  (AP)  | 0.50      |    all | 300 |          all | 43.58% |
|  (AP)  | 0.75      |    all | 300 |          all | 27.15% |
|  (AP)  | 0.50:0.95 |      s | 300 |          all | 20.26% |
|  (AP)  | 0.50:0.95 |      m | 300 |          all | 32.81% |
|  (AP)  | 0.50:0.95 |      l | 300 |          all | 40.10% |
|  (AP)  | 0.50:0.95 |    all | 300 |            r | 17.66% |
|  (AP)  | 0.50:0.95 |    all | 300 |            c | 25.75% |
|  (AP)  | 0.50:0.95 |    all | 300 |            f | 29.55% |
|  (AR)  | 0.50:0.95 |    all | 300 |          all | 34.76% |
|  (AR)  | 0.50:0.95 |      s | 300 |          all | 24.77% |
|  (AR)  | 0.50:0.95 |      m | 300 |          all | 41.50% |
|  (AR)  | 0.50:0.95 |      l | 300 |          all | 51.64% |

Results and models

The main results on LVIS val set:

LVIS val results

Models:

Please refer to our paper and supp for more details.

ID Models bbox mAP / mask mAP Train Test Config file Pretrained Model Train part Model
(1) Faster R50-FPN 20.98 file COCO R50 All Google drive
(2) x2 21.93 file Model (1) All Google drive
(3) Finetune tail 22.28 × file Model (1) All Google drive
(4) RFS 23.41 file COCO R50 All Google drive
(5) RFS-finetune 22.66 file Model (1) All Google drive
(6) Re-weight 23.48 file Model (1) All Google drive
(7) Re-weight-cls 24.66 file Model (1) Cls Google drive
(8) Focal loss 11.12 × file Model (1) All Google drive
(9) Focal loss-cls 19.29 × file Model (1) Cls Google drive
(10) NCM-fc 16.02 × × Model (1)
(11) NCM-conv 12.56 × × Model (1)
(12) $\tau$-norm 11.01 × × Model (1) Cls
(13) $\tau$-norm-select 21.61 × × Model (1) Cls
(14) Ours (Faster R50-FPN) 25.96 file Model (1) Cls Google drive
(15) Faster X101-64x4d 24.63 file COCO x101 All Google drive
(16) Ours (Faster X101-64x4d) 27.83 file Model (15) Cls Google drive
(17) Cascade X101-64x4d 27.16 file COCO cascade x101 All Google drive
(18) Ours (Cascade X101-64x4d) 32.77 file Model (17) Cls Google drive
(19) Mask R50-FPN 20.78/20.68 file COCO mask r50 All Google drive
(20) Ours (Mask R50-FPN) 25.76/26.25 file Model (19) Cls Google drive
(21) HTC X101-64x4d 31.28/29.28 file COCO HTC x101 All Google drive
(22) Ours (HTC X101-64x4d) 33.68/31.20 file Model (21) Cls Google drive
(23) HTC X101-64x4d-MS-DCN 34.61/31.94 file COCO HTC x101-ms-dcn All Google drive
(24) Ours (HTC X101-64x4d-MS-DCN) 37.71/34.39 file Model (23) Cls Google drive

PS: in column Pretrained Model, the file of Model (n) is the same as the Google drive file in column Model in row (n).

Citation

@inproceedings{li2020overcoming,
  title={Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax},
  author={Li, Yu and Wang, Tao and Kang, Bingyi and Tang, Sheng and Wang, Chunfeng and Li, Jintao and Feng, Jiashi},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10991--11000},
  year={2020}
}

Credit

This code is largely based on mmdetection v1.0.rc0 and LVIS API.

Owner
FishYuLi
happy
FishYuLi
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022