Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Overview

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

This repository contains the code to reproduce the results from the paper. Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code or paper useful, please consider citing

@inproceedings{NeuralPull,
    title = {Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces},
    author = {Baorui, Ma and Zhizhong, Han and Yu-shen, Liu and Matthias, Zwicker},
    booktitle = {International Conference on Machine Learning (ICML)},
    year = {2021}
}

Surface Reconstruction Demo

Single Image Reconstruction Demo

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called tensorflow1 using

conda env create -f NeuralPull.yaml
conda activate tensorflow1

Next, for evaluation of the models,compile the extension modules, which are provided by Occupancy Networks. You can do this via

python setup.py build_ext --inplace

To compile the dmc extension, you have to have a cuda enabled device set up. If you experience any errors, you can simply comment out the dmc_* dependencies in setup.py. You should then also comment out the dmc imports in im2mesh/config.py.

Dataset and pretrained model

  1. You can download our preprocessed data and pretrained model.Included in the link:

    --Our pre-train model on ABC and FAMOUS dataset.

    --Preprocessing data of ABC and FAMOUS(sample points and ground truth points).

    --Our reconstruction results.

  2. To make it easier for you to test the code, we have prepared exmaple data in the exmaple_data folder.

Building the dataset

Alternatively, you can also preprocess the dataset yourself. To this end, you have to follow the following steps:

  • Put your own pointcloud files in 'input_dir' folder, each pointcloud file in a separate .xyz.npy file.
  • Set an empty folder 'out_dir' to place the processed data, note, the folder need to be empty, because this folder will be deleted before the program runs.

You are now ready to build the dataset:

python sample_query_point --out_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --CUDA 0 --dataset other --input_dir ./data/abc_noisefree/04_pts/ 

Training

You can train a new network from scratch, run

  1. Surface Reconstruction
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --dataset shapenet
  1. Single Image Reconstruction
python NeuralPull_SVG.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --class_name plane
  1. Train the dataset yourself
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --train --dataset other

Evaluation

For evaluation of the models and generation meshes using a trained model, use

  1. Surface Reconstruction
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --dataset shapenet
  1. Single Image Reconstruction
python NeuralPull_SVG.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --class_name plane
  1. Evaluation the dataset yourself
python NeuralPull.py --data_dir /data1/mabaorui/AtlasNetOwn/data/plane_precompute_2/ --out_dir /data1/mabaorui/AtlasNetOwn/plane_cd_sur/ --class_idx 02691156 --dataset other

Script Parameters Explanation

Parameters Description
train train or test a network.
data_dir preprocessed data.
out_dir store network parameters when training or to load pretrained network parameters when testing.
class_idx the class to train or test when using shapenet dataset, other dataset, default.
class_name the class to train or test when using shapenet dataset, other dataset, default.
dataset shapenet,famous,ABC or other(your dataset)

Pytorch Implementation of Neural-Pull

Notably, the code in Pytorch implementation is not released by the official lab, it is achieved by @wzxshgz123's diligent work. His intention is only to provide references to researchers who are interested in Pytorch implementation of Neural-Pull. There is no doubt that his unconditional dedication should be appreciated.

Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021