Synthetic Humans for Action Recognition, IJCV 2021

Related tags

Deep Learningsurreact
Overview

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints

Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Humans for Action Recognition from Unseen Viewpoints, IJCV 2021.

[Project page] [arXiv]

Contents

1. Synthetic data generation from motion estimation

Please follow the instructions at datageneration/README.md for setting up the Blender environment and downloading required assets.

Once ready, you can generate one clip by running:

# set `BLENDER_PATH` and `CODE_PATH` variables in this script
bash datageneration/exe/run.sh

Note that -t 1 option in run.sh can be removed to run faster on multi cores. We used submit_multi_job*.sh to generate clips for the whole datasets in parallel on the cluster, you can adapt this for your infrastructure. This script also has sample argument-value pairs. Find in utils/argutils.py a list of arguments and their explanations. You can enable/disable outputting certain modalities by setting output_types here.

2. Training action recognition models

Please follow the instructions at training/README.md for setting up the Pytorch environment and preparing the datasets.

Once ready, you can launch training by running:

cd training/
bash exp/surreact_train.sh

3. Download SURREACT datasets

In order to download SURREACT datasets, you need to accept the license terms from SURREAL. The links to license terms and download procedure are available here:

https://www.di.ens.fr/willow/research/surreal/data/

Once you receive the credentials to download the dataset, you will have a personal username and password. Use these to download the synthetic videos from the following links. Note that due to storage complexity, we only provide .mp4 video files and metadata, but not the other modalities such as flow and segmentation. You are encouraged to run the data generation code to obtain those. We provide videos corresponding to NTU and UESTC datasets.

The structure of the folders can be as follows:

surreact/
------- uestc/  # using motion estimates from the UESTC dataset
------------ hmmr/
------------ vibe/
------- ntu/  # using motion estimates from the NTU dataset
------------ hmmr/
------------ vibe/
---------------- train/
---------------- test/
--------------------- <sequenceName>/ # e.g. S001C002P003R002A001 for NTU, a25_d1_p048_c1_color.avi for UESTC
------------------------------ <sequenceName>_v%03d_r%02d.mp4       # RGB - 240x320 resolution video
------------------------------ <sequenceName>_v%03d_r%02d_info.mat  # metadata
# bg         [char]          - name of the background image file
# cam_dist   [1 single]      - camera distance
# cam_height [1 single]      - camera height
# cloth      [chat]          - name of the texture image file
# gender     [1 uint8]       - gender (0: 'female', 1: 'male')
# joints2D   [2x24xT single] - 2D coordinates of 24 SMPL body joints on the image pixels
# joints3D   [3x24xT single] - 3D coordinates of 24 SMPL body joints in world meters
# light      [9 single]      - spherical harmonics lighting coefficients
# pose       [72xT single]   - SMPL parameters (axis-angle)
# sequence   [char]          - <sequenceName>
# shape      [10 single]     - body shape parameters
# source     [char]          - 'ntu' | 'hri40'
# zrot_euler [1 single]      - rotation in Z (euler angle), zero

# *** v%03d stands for the viewpoint in euler angles, we render 8 views: 000, 045, 090, 135, 180, 225, 270, 315.
# *** r%02d stands for the repetition, when the same video is rendered multiple times (this is always 00 for the released files)
# *** T is the number of frames, note that this can be smaller than the real source video length due to motion estimation dropping frames

Citation

If you use this code or data, please cite the following:

@INPROCEEDINGS{varol21_surreact,  
  title     = {Synthetic Humans for Action Recognition from Unseen Viewpoints},  
  author    = {Varol, G{\"u}l and Laptev, Ivan and Schmid, Cordelia and Zisserman, Andrew},  
  booktitle = {IJCV},  
  year      = {2021}  
}

License

Please check the SURREAL license terms before downloading and/or using the SURREACT data and data generation code.

Acknowledgements

The data generation code was extended from gulvarol/surreal. The training code was extended from bearpaw/pytorch-pose. The source of assets include action recognition datasets NTU and UESTC, SMPL and SURREAL projects. The motion estimation was possible thanks to mkocabas/VIBE or akanazawa/human_dynamics (HMMR) repositories. Please cite the respective papers if you use these.

Special thanks to Inria clusters sequoia and rioc.

Owner
Gul Varol
Computer Vision Researcher
Gul Varol
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022