Synthetic Humans for Action Recognition, IJCV 2021

Related tags

Deep Learningsurreact
Overview

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints

Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Humans for Action Recognition from Unseen Viewpoints, IJCV 2021.

[Project page] [arXiv]

Contents

1. Synthetic data generation from motion estimation

Please follow the instructions at datageneration/README.md for setting up the Blender environment and downloading required assets.

Once ready, you can generate one clip by running:

# set `BLENDER_PATH` and `CODE_PATH` variables in this script
bash datageneration/exe/run.sh

Note that -t 1 option in run.sh can be removed to run faster on multi cores. We used submit_multi_job*.sh to generate clips for the whole datasets in parallel on the cluster, you can adapt this for your infrastructure. This script also has sample argument-value pairs. Find in utils/argutils.py a list of arguments and their explanations. You can enable/disable outputting certain modalities by setting output_types here.

2. Training action recognition models

Please follow the instructions at training/README.md for setting up the Pytorch environment and preparing the datasets.

Once ready, you can launch training by running:

cd training/
bash exp/surreact_train.sh

3. Download SURREACT datasets

In order to download SURREACT datasets, you need to accept the license terms from SURREAL. The links to license terms and download procedure are available here:

https://www.di.ens.fr/willow/research/surreal/data/

Once you receive the credentials to download the dataset, you will have a personal username and password. Use these to download the synthetic videos from the following links. Note that due to storage complexity, we only provide .mp4 video files and metadata, but not the other modalities such as flow and segmentation. You are encouraged to run the data generation code to obtain those. We provide videos corresponding to NTU and UESTC datasets.

The structure of the folders can be as follows:

surreact/
------- uestc/  # using motion estimates from the UESTC dataset
------------ hmmr/
------------ vibe/
------- ntu/  # using motion estimates from the NTU dataset
------------ hmmr/
------------ vibe/
---------------- train/
---------------- test/
--------------------- <sequenceName>/ # e.g. S001C002P003R002A001 for NTU, a25_d1_p048_c1_color.avi for UESTC
------------------------------ <sequenceName>_v%03d_r%02d.mp4       # RGB - 240x320 resolution video
------------------------------ <sequenceName>_v%03d_r%02d_info.mat  # metadata
# bg         [char]          - name of the background image file
# cam_dist   [1 single]      - camera distance
# cam_height [1 single]      - camera height
# cloth      [chat]          - name of the texture image file
# gender     [1 uint8]       - gender (0: 'female', 1: 'male')
# joints2D   [2x24xT single] - 2D coordinates of 24 SMPL body joints on the image pixels
# joints3D   [3x24xT single] - 3D coordinates of 24 SMPL body joints in world meters
# light      [9 single]      - spherical harmonics lighting coefficients
# pose       [72xT single]   - SMPL parameters (axis-angle)
# sequence   [char]          - <sequenceName>
# shape      [10 single]     - body shape parameters
# source     [char]          - 'ntu' | 'hri40'
# zrot_euler [1 single]      - rotation in Z (euler angle), zero

# *** v%03d stands for the viewpoint in euler angles, we render 8 views: 000, 045, 090, 135, 180, 225, 270, 315.
# *** r%02d stands for the repetition, when the same video is rendered multiple times (this is always 00 for the released files)
# *** T is the number of frames, note that this can be smaller than the real source video length due to motion estimation dropping frames

Citation

If you use this code or data, please cite the following:

@INPROCEEDINGS{varol21_surreact,  
  title     = {Synthetic Humans for Action Recognition from Unseen Viewpoints},  
  author    = {Varol, G{\"u}l and Laptev, Ivan and Schmid, Cordelia and Zisserman, Andrew},  
  booktitle = {IJCV},  
  year      = {2021}  
}

License

Please check the SURREAL license terms before downloading and/or using the SURREACT data and data generation code.

Acknowledgements

The data generation code was extended from gulvarol/surreal. The training code was extended from bearpaw/pytorch-pose. The source of assets include action recognition datasets NTU and UESTC, SMPL and SURREAL projects. The motion estimation was possible thanks to mkocabas/VIBE or akanazawa/human_dynamics (HMMR) repositories. Please cite the respective papers if you use these.

Special thanks to Inria clusters sequoia and rioc.

Owner
Gul Varol
Computer Vision Researcher
Gul Varol
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022