Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

Overview

Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

License: MIT

Paper (CVPR 2021)

Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

Updates

  • (02/03/2021) Higher performance is reported by using stronger backbone model PVT.
  • (23/02/2021) Higher performance is reported by using stronger pretrain model DetCo.
  • (02/12/2020) Models and logs(R101_100pro_3x and R101_300pro_3x) are available.
  • (26/11/2020) Models and logs(R50_100pro_3x and R50_300pro_3x) are available.
  • (26/11/2020) Higher performance for Sparse R-CNN is reported by setting the dropout rate as 0.0.

Models

Method inf_time train_time box AP download
R50_100pro_3x 23 FPS 19h 42.8 model | log
R50_300pro_3x 22 FPS 24h 45.0 model | log
R101_100pro_3x 19 FPS 25h 44.1 model | log
R101_300pro_3x 18 FPS 29h 46.4 model | log

Models and logs are available in Baidu Drive by code wt9n.

Notes

  • We observe about 0.3 AP noise.
  • The training time is on 8 GPUs with batchsize 16. The inference time is on single GPU. All GPUs are NVIDIA V100.
  • We use the models pre-trained on imagenet using torchvision. And we provide torchvision's ResNet-101.pkl model. More details can be found in the conversion script.
Method inf_time train_time box AP codebase
R50_300pro_3x 22 FPS 24h 45.0 detectron2
R50_300pro_3x.detco 22 FPS 28h 46.5 detectron2
PVTSmall_300pro_3x 13 FPS 50h 45.7 mmdetection
PVTv2-b2_300pro_3x 11 FPS 76h 50.1 mmdetection

Installation

The codebases are built on top of Detectron2 and DETR.

Requirements

  • Linux or macOS with Python ≥ 3.6
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this
  • OpenCV is optional and needed by demo and visualization

Steps

  1. Install and build libs
git clone https://github.com/PeizeSun/SparseR-CNN.git
cd SparseR-CNN
python setup.py build develop
  1. Link coco dataset path to SparseR-CNN/datasets/coco
mkdir -p datasets/coco
ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
ln -s /path_to_coco_dataset/train2017 datasets/coco/train2017
ln -s /path_to_coco_dataset/val2017 datasets/coco/val2017
  1. Train SparseR-CNN
python projects/SparseRCNN/train_net.py --num-gpus 8 \
    --config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml
  1. Evaluate SparseR-CNN
python projects/SparseRCNN/train_net.py --num-gpus 8 \
    --config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml \
    --eval-only MODEL.WEIGHTS path/to/model.pth
  1. Visualize SparseR-CNN
python demo/demo.py\
    --config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml \
    --input path/to/images --output path/to/save_images --confidence-threshold 0.4 \
    --opts MODEL.WEIGHTS path/to/model.pth

Third-party resources

License

SparseR-CNN is released under MIT License.

Citing

If you use SparseR-CNN in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@article{peize2020sparse,
  title   =  {{SparseR-CNN}: End-to-End Object Detection with Learnable Proposals},
  author  =  {Peize Sun and Rufeng Zhang and Yi Jiang and Tao Kong and Chenfeng Xu and Wei Zhan and Masayoshi Tomizuka and Lei Li and Zehuan Yuan and Changhu Wang and Ping Luo},
  journal =  {arXiv preprint arXiv:2011.12450},
  year    =  {2020}
}
Owner
Peize Sun
PhD student, The University of Hong Kong, Computer Vision
Peize Sun
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023