IsoGCN code for ICLR2021

Overview

IsoGCN

The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional Networks [arXiv].

isogcn

Please cite us as:

@inproceedings{
horie2021isometric,
title={Isometric Transformation Invariant and Equivariant Graph Convolutional Networks},
author={Masanobu Horie and Naoki Morita and Toshiaki Hishinuma and Yu Ihara and Naoto Mitsume},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=FX0vR39SJ5q}
}

General notice

If some of the following steps not working, please modify User settings section in the Makefile to fit with your environment.

Installation

You can either locally install locally or use Docker image. However, to generate an anisotropic nonlinear heat equation dataset, we recommend using Docker.

Local install

We are using poetry, thus first install it following the instruction on https://python-poetry.org/docs/ . Then, update the Makefile to PYTHON ?= 'poetry run python3' or explicitly specify the PYTHON environment variable on the execution of the make command.

For GPU environment,

PYTHON='poetry run python3' make poetry
poetry install
PYTHON='poetry run python3' make install_pyg_gpu

For CPU environment,

PYTHON='poetry run python3' make poetry
poetry install
PYTHON='poetry run python3' make install_pyg_cpu

, and set GPU_ID = -1 in the Makefile.

Also, optionally, please install FrontISTR and gmsh to generate an anisotropic nonlinear heat equation dataset (which are installed in the Docker image).

Docker image

Please download the docker image via https://savanna.ritc.jp/~horiem/isogcn_iclr2021/images/isogcn.tar, then place the image in the images directory. After that, plsease make in to login the docker befor perfroming all the following processes.

Differential operator dataset

Data generation

make differential_data

Training IsoGCN

make scalar2grad  # Scalar to gradient task
make scalar2grad  ADJ=5  # Scalar to gradient task with # hops = 5
make scalar2hessian  # Scalar to Hessian task
make grad2laplacian  # Gradient to Laplacian task
make grad2hessian  # Gradient to Hessian task

Training baseline models

make scalar2grad_baseline BASELINE_NAME=gcn  # BASELINE_NAME=[cluster_gcn, gcn, gcnii, gin, sgcn]

Similarly, one can perform baseline model trainings for other tasks.

Anisotropic nonlinear heat equation dataset

Run whole process with small data to check the process (Optional)

It generates a small dataset to simulate the whole process of data generation, preprocessing, training, and inference. This process requires either FrontISTR installed locally or Docker image.

make small_heat_nl_tensor_pipeline

Dataset download

The dataset containing finite element analysis results is generated from the ABC dataset using gmsh for meshing and FrontISTR for analysis.

Please download the dataset you need. (Note: To perform only training, you need only 'preprocessed' data.) The dataset can be downloaded via:

After download finished, please merge the split archives with:

cat train_50.tar.gz.parta* > train.tar.gz

, extract them with tar xvf *.tar.gz, then place them in the corresponding data/heat_nl_tensor/(raw|interim|preprocessed) directory.

Training IsoGCN

make heat_nl_tensor

Training baseline models

make heat_nl_tensor_baseline BASELINE_NAME=gcn  # BASELINE_NAME=[cluster_gcn, gcn, gcnii, gin, sgcn]

IsoGCN core implementation

The core implementation of the IsoGCN layer is separated in the library SiML and can be found here. Also, the code to generate IsoAMs is separated in the library Femio and can be found here.

License

Apache License 2.0.

Owner
horiem
A researcher, an engineer, and a Ph.D. student in machine learning + physical simulation.
horiem
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022