Official Implementation of PCT

Related tags

Deep LearningProto_DA
Overview

Official Implementation of PCT

Prerequisites

  • python == 3.8.5

Please make sure you have the following libraries installed:

  • numpy
  • torch>=1.4.0
  • torchvision>=0.5.0

Datasets

We provide direct download links in the script. However, for file larger than 100 MB (OfficeHome - Art and RealWorld), please manually download them from the following links--Art and RealWorld--and extract them appropriately.

Usage

  • beta - learning rate/ momentum parameter to learn proportions in the target domain ( beta=0 corresponds to using a uniform prior)
  • sub_s - subsample the source dataset
  • sub_t - subsample the target dataset

Below, we provide example commands to run our method.

# Train PCT on Office-31 Amazon -> Webcam task using ResNet 50.
# Assume you have put the datasets under the path `data/office-31

# Single-source adaptation 
python examples/proto.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 10

# Sub-sampled source adaptation (uniform prior)
python examples/proto.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 10 --sub_s

# Sub-sampled source adaptation (learnable prior)
python examples/proto.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 10 --sub_s --beta 0.001

# Sub-sampled target adaptation (uniform prior)
python examples/proto.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 10 --sub_t

# Sub-sampled target adaptation (learnable prior)
python examples/proto.py data/office31 -d Office31 -s A -t W -a resnet50  --epochs 10 --sub_t --beta 0.001

Example commands are included in examples/proto.sh.

For source-private adaptation, please follow the instruction in the readme.md in the `Proto_Private' folder.

Citation

We adapt our code base from the v0.1 of the DALIB library.

If you find our framework useful, please cite our paper.

PCT

@inproceedings{tanwisuth2021prototype,
title={A Prototype-Oriented Framework for Unsupervised Domain Adaptation},
author={Korawat Tanwisuth and Xinjie Fan and Huangjie Zheng and Shujian Zhang and Hao Zhang and Bo Chen and Mingyuan Zhou},
booktitle = {NeurIPS 2021: Neural Information Processing Systems},
month={Dec.},
Note = {(the first three authors contributed equally)},
year = {2021}
}

DALIB

@misc{dalib,
author = {Junguang Jiang, Baixu Chen, Bo Fu, Mingsheng Long},
title = {Transfer-Learning-library},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/thuml/Transfer-Learning-Library}},
}

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022