ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

Overview

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)
(Accepted by ICCV'21)

image

Abstract:

Snow is a highly complicated atmospheric phenomenon that usually contains snowflake, snow streak, and veiling effect (similar to the haze or the mist). In this literature, we propose a single image desnowing algorithm to address the diversity of snow particles in shape and size. First, to better represent the complex snow shape, we apply the dual-tree wavelet transform and propose a complex wavelet loss in the network. Second, we propose a hierarchical decomposition paradigm in our network for better understanding the different sizes of snow particles. Last, we propose a novel feature called the contradict channel (CC) for the snow scenes. We find that the regions containing the snow particles tend to have higher intensity in the CC than that in the snow-free regions. We leverage this discriminative feature to construct the contradict channel loss for improving the performance of snow removal. Moreover, due to the limitation of existing snow datasets, to simulate the snow scenarios comprehensively, we propose a large-scale dataset called Comprehensive Snow Dataset (CSD). Experimental results show that the proposed method can favorably outperform existing methods in three synthetic datasets and real-world datasets.

[Paper Download] [Dataset Download] [Poster Download] [Slide Download]

You can also refer our previous works on other low-level vision applications!

Desnowing-[JSTASR](ECCV'20)
Dehazing-[PMS-Net](CVPR'19) and [PMHLD](TIP'20)
Image Relighting-[MB-Net] (NTIRE'21 1st solution) and [S3Net] (NTIRE'21 3 rd solution)

Network Architecture

image

Dataset

We also propose a large scale dataset called Comprehensive Snow Dataset (CSD). It can present the snow scenes in more comprehensive way. You can leverage this dataset to train your network.
[Dataset Download] image

Setup and environment

To generate the recovered result you need:

  1. Python 3
  2. CPU or NVIDIA GPU + CUDA CuDNN
  3. tensorflow 1.15.0
  4. keras 2.3.0
  5. dtcwt 0.12.0

Training

python ./train.py --logPath ./your_log_path --dataPath /path_to_data/data.npy --gtPath /path_to_gt/gt.npy --batchsize batchsize --epochs epochs --modelPath ./path_to_exist_model/model_to_load.h5 --validation_num number_of_validation_image --steps_per_epoch steps_per_epoch

*data.npy should be numpy of training image whose shape is (number_of_image, 480, 640, 3). The range is (0, 255) and the datatype is uint8 or int.
*gt.npy should be numpy of ground truth image, whose shape is (number_of_image, 480, 640, 3). The range is (0, 255) and datatype is uint8 or int.

Example:

python ./train.py --logPath ./log --dataPath ./training_data.npy --gtPath ./training_gt.npy --batchsize 3 --epochs 1500 --modelPath ./previous_log/preivious_model.h5 --validation_num 200 --steps_per_epoch 80

Testing

$ python ./predict.py -dataroot ./your_dataroot -datatype datatype -predictpath ./output_path -batch_size batchsize

*datatype default: tif, jpg ,png

Examples

$ 
python ./predict.py -dataroot ./testImg -predictpath ./p -batch_size 3
python ./predict.py -dataroot ./testImg -datatype tif -predictpath ./p -batch_size 3

The pre-trained model can be downloaded from: https://ntucc365-my.sharepoint.com/:u:/g/personal/f05943089_ntu_edu_tw/EZtus9ex-GtNukLuSxWGmPIBEJIzRFMbEl0dFeZ_oTQnVQ?e=xnfqFL. Put the "finalmodel.h5" to the 'modelParam'.

Citations

Please cite this paper in your publications if it is helpful for your tasks:

Bibtex:

@inproceedings{chen2021all,
  title={ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-Tree Complex Wavelet Representation and Contradict Channel Loss},
  author={Chen, Wei-Ting and Fang, Hao-Yu and Hsieh, Cheng-Lin and Tsai, Cheng-Che and Chen, I and Ding, Jian-Jiun and Kuo, Sy-Yen and others},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4196--4205},
  year={2021}
}
Owner
Wei-Ting Chen
Wei-Ting Chen
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022