Random Walk Graph Neural Networks

Overview

Random Walk Graph Neural Networks

This repository is the official implementation of Random Walk Graph Neural Networks.

Requirements

Code is written in Python 3.6 and requires:

  • PyTorch 1.5
  • scikit-learn 0.21

Datasets

Use the following link to download datasets:

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Extract the datasets into the datasets folder.

Training and Evaluation

To train and evaluate the model in the paper, run this command:

python main.py --dataset <dataset_name> 

Example

To train and evaluate the model on MUTAG, first specify the hyperparameters in the main.py file and then run:

python main.py --dataset MUTAG --use-node-labels

Results

Our model achieves the following performance on standard graph classification datasets (note that we used the evaluation procedure and same data splits as in this paper):

Model name MUTAG D&D NCI1 PROTEINS ENZYMES
SP 80.2 (± 6.5) 78.1 (± 4.1) 72.7 (± 1.4) 75.3 (± 3.8) 38.3 (± 8.0)
GR 80.8 (± 6.4) 75.4 (± 3.4) 61.8 (± 1.7) 71.6 (± 3.1) 25.1 (± 4.4)
WL 84.6 (± 8.3) 78.1 (± 2.4) 84.8 (± 2.5) 73.8 (± 4.4) 50.3 (± 5.7)
DGCNN 84.0 (± 6.7) 76.6 (± 4.3) 76.4 (± 1.7) 72.9 (± 3.5) 38.9 (± 5.7)
DiffPool 79.8 (± 7.1) 75.0 (± 3.5) 76.9 (± 1.9) 73.7 (± 3.5) 59.5 (± 5.6)
ECC 75.4 (± 6.2) 72.6 (± 4.1) 76.2 (± 1.4) 72.3 (± 3.4) 29.5 (± 8.2)
GIN 84.7 (± 6.7) 75.3 (± 2.9) 80.0 (± 1.4) 73.3 (± 4.0) 59.6 (± 4.5)
GraphSAGE 83.6 (± 9.6) 72.9 (± 2.0) 76.0 (± 1.8) 73.0 (± 4.5) 58.2 (± 6.0)
1-step RWNN 89.2 (± 4.3) 77.6 (± 4.7) 71.4 (± 1.8) 74.7 (± 3.3) 56.7 (± 5.2)
2-step RWNN 88.1 (± 4.8) 76.9 (± 4.6) 73.0 (± 2.0) 74.1 (± 2.8) 57.4 (± 4.9)
3-step RWNN 88.6 (± 4.1) 77.4 (± 4.9) 73.9 (± 1.3) 74.3 (± 3.3) 57.6 (± 6.3)
Model name IMDB-BINARY IMDB-MULTI REDDIT-BINARY REDDIT-MULTI-5K COLLAB
SP 57.7 (± 4.1) 39.8 (± 3.7) 89.0 (± 1.0) 51.1 (± 2.2) 79.9 (± 2.7)
GR 63.3 (± 2.7) 39.6 (± 3.0) 76.6 (± 3.3) 38.1 (± 2.3) 71.1 (± 1.4)
WL 72.8 (± 4.5) 51.2 (± 6.5) 74.9 (± 1.8) 49.6 (± 2.0) 78.0 (± 2.0)
DGCNN 69.2 (± 3.0) 45.6 (± 3.4) 87.8 (± 2.5) 49.2 (± 1.2) 71.2 (± 1.9)
DiffPool 68.4 (± 3.3) 45.6 (± 3.4) 89.1 (± 1.6) 53.8 (± 1.4) 68.9 (± 2.0)
ECC 67.7 (± 2.8) 43.5 (± 3.1) OOR OOR OOR
GIN 71.2 (± 3.9) 48.5 (± 3.3) 89.9 (± 1.9) 56.1 (± 1.7) 75.6 (± 2.3)
GraphSAGE 68.8 (± 4.5) 47.6 (± 3.5) 84.3 (± 1.9) 50.0 (± 1.3) 73.9 (± 1.7)
1-step RWNN 70.8 (± 4.8) 47.8 (± 3.8) 90.4 (± 1.9) 51.7 (± 1.5) 71.7 (± 2.1)
2-step RWNN 70.6 (± 4.4) 48.8 (± 2.9) 90.3 (± 1.8) 51.7 (± 1.4) 71.3 (± 2.1)
3-step RWNN 70.7 (± 3.9) 47.8 (± 3.5) 89.7 (± 1.2) 53.4 (± 1.6) 71.9 (± 2.5)

Cite

Please cite our paper if you use this code:

@inproceedings{nikolentzos2020random,
  title={Random Walk Graph Neural Networks},
  author={Nikolentzos, Giannis and Vazirgiannis, Michalis},
  booktitle={Proceedings of the 34th Conference on Neural Information Processing Systems},
  pages={16211--16222},
  year={2020}
}
Owner
Giannis Nikolentzos
Giannis Nikolentzos
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022