Customizable RecSys Simulator for OpenAI Gym

Overview

gym-recsys: Customizable RecSys Simulator for OpenAI Gym

Installation | How to use | Examples | Citation

This package describes an OpenAI Gym interface for creating a simulation environment of reinforcement learning-based recommender systems (RL-RecSys). The design strives for simple and flexible APIs to support novel research.

Installation

gym-recsys can be installed from PyPI using pip:

pip install gym-recsys

Note that we support Python 3.7+ only.

You can also install it directly from this GitHub repository using pip:

pip install git+git://github.com/zuoxingdong/gym-recsys.git

How to use

To use gym-recsys, you need to define the following components:

user_ids

This describes a list of available user IDs for the simulation. Normally, a user ID is an integer.

An example of three users: user_ids = [0, 1, 2]

Note that the user ID will be taken as an input to user_state_model_callback to generate observations of the user state.

item_category

This describes the categories of a list of available items. The data type should be a list of strings. The indices of the list is assumed to correspond to item IDs.

An example of three items: item_category = ['sci-fi', 'romance', 'sci-fi']

The category information is mainly used for visualization via env.render().

item_popularity

This describe the popularity measure of a list of available items. The data type should be a list (or 1-dim array) of integers. The indices of the list is assumed to correspond to item IDs.

An example of three items: item_popularity = [5, 3, 1]

The popularity information is used for calculating Expected Popularity Complement (EPC) in the visualization.

hist_seq_len

This is an integer describing the number of most recently clicked items by the user to encode as the current state of the user.

An example of the historical sequence with length 3: hist_seq = [-1, 2, 0]. The item ID -1 indicates an empty event. In this case, the user clicked two items in the past, first item ID 2 followed by a second item ID 0.

The internal FIFO queue hist_seq will be taken as an input to both user_state_model_callback and reward_model_callback to generate observations of the user state.

slate_size

This is an integer describing the size of the slate (display list of recommended items).

It induces a combinatorial action space for the RL agent.

user_state_model_callback

This is a Python callback function taking user_id and hist_seq as inputs to generate an observation of current user state.

Note that it is generic. Either pre-defined heuristic computations or pre-trained neural network models using user/item embeddings can be wrapped as a callback function.

reward_model_callback

This is a Python callback function taking user_id, hist_seq and action as inputs to generate a reward value for each item in the slate. (i.e. action)

Note that it is generic. Either pre-defined heuristic computations or pre-trained neural network models using user/item embeddings can be wrapped as a callback function.

Examples

To illustrate the simple yet flexible design of gym-recsys, we provide a toy example to construct a simulation environment.

First, let us sample random embeddings for one user and five items:

user_features = np.random.randn(1, 10)
item_features = np.random.randn(5, 10)

Now let us define the category and popularity score for each item:

item_category = ['sci-fi', 'romance', 'sci-fi', 'action', 'sci-fi']
item_popularity = [5, 3, 1, 2, 3]

Then, we define callback functions for user state and reward values:

def user_state_model_callback(user_id, hist_seq):
    return user_features[user_id]

def reward_model_callback(user_id, hist_seq, action):
    return np.inner(user_features[user_id], item_features[action])

Finally, we are ready to create a simulation environment with OpenAI Gym API:

env_kws = dict(
    user_ids=[0],
    item_category=item_category,
    item_popularity=item_popularity,
    hist_seq_len=3,
    slate_size=2,
    user_state_model_callback=user_state_model_callback,
    reward_model_callback=reward_model_callback
)
env = gym.make('gym_recsys:RecSys-t50-v0', **env_kws)

Note that we created the environment with slate size of two items and historical interactions of the recent 3 steps. The horizon is 50 time steps.

Now let us play with this environment.

By evaluating a random agent with 100 times, we got the following performance:

Agent Episode Reward CTR
random 73.54 68.23%

Given the sampled embeddings, let's say item 1 and 3 lead to maximally possible reward values. Let us see how a greedy policy performs by constantly recommending item 1 and 3:

Agent Episode Reward CTR
greedy 180.86 97.93%

Last but not least, for the most fun part, let us generate animations of both policy for an episode via gym's Monitor wrapper, showing as GIFs in the following:

Random Agent

Greedy Agent

Citation

If you use gym-recsys in your work, please cite this repository:

@software{zuo2021recsys,
  author={Zuo, Xingdong},
  title={gym-recsys: Customizable RecSys Simulator for OpenAI Gym},
  url={https://github.com/zuoxingdong/gym-recsys},
  year={2021}
}
Owner
Xingdong Zuo
AI in well-being is my dream. Neural networks need to understand the world causally.
Xingdong Zuo
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022