Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Related tags

Deep LearningGADA
Overview

Geometrically Adaptive Dictionary Attack on Face Recognition

This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV2022).

Getting started

Dependencies

The code of GADA uses various packages such as Python 3.7, Pytorch 1.6.0, cython=0.29.21, and it is easy to install them by copying the existing environment to the current system to install them easily.

We have saved the conda environment for both Windows and Ubuntu, and you can copy the conda environment to the current system. You can install the conda environment by entering the following command at the conda prompt.

conda env create -f GADA_ubuntu.yml

After setting the environment, you may need to compile the 3D renderer by entering the command.

At the '_3DDFA_V2\Sim3DR' path

python setup.py build_ext --inplace

Since 3D Renderer has already been compiled on Windows and Ubuntu, there may be no problem in running the experiment without executing the above command.

Pretrained face recognition models

You can download the pretrained face recogntion models from face.evoLVe and CurricularFace

After downloading the checkpoint files, place 'backbone_ir50_ms1m_epoch120.pth' into '/checkpoint/ms1m-ir50/' and 'CurricularFace_Backbone.pth' into '/checkpoint/'

Dataset

You can download test image sequences for the LFW and CPLFW datasets from the following links.

LFW test image sequence

CPLFW test image sequence

Place them into the root folder of the project.

Each image sequence has 500 image pairs for dodging and impersonation attack.

These images are curated from the aligned face datasets provided by face.evoLVe.

Usage

You can perform an attack experiment by entering the following command.

python attack.py --model=2 --attack=EAGD --dataset=LFW

The model argument is the index of the target facial recognition model.

1: CurricularFace ResNet-100, 2: ArcFace ResNet-50, 3: FaceNet

The attack argument indicates the attack method.

HSJA, SO, EA, EAD, EAG, EAGD, EAG, EAGDR, EAGDO, SFA, SFAD, SFAG, SFAGD

If --targeted is given as an execution argument, impersonation attack is performed. If no argument is given, dodging attack is performed by default.

The dataset argument sets which test dataset to use and supports LFW and CPLFW.

If you want to enable stateful detection as a defense, pass the --defense=SD argument to the command line.

When an experiment is completed for 500 test images, a 'Dataset_NumImages_targeted_attackname_targetmodel_defense_.pth' file is created in the results folder like 'CPLFW_500_1_EVGD_IR_50_gaussian_.pth'.

Using plotter.py, you can load the above saved file and print various results, such as the l2 norm of perturbation at 1000, 2000, 5000, and 10000 steps, the average number of queries until the l2 norm of perturbation becomes 2 or 4, adversarial examples, etc.

Citation

If you find this work useful, please consider citing our paper :) We provide a BibTeX entry of our paper below:

    @article{byun2021geometrically,
    title={Geometrically Adaptive Dictionary Attack on Face Recognition},
    author={Byun, Junyoung and Go, Hyojun and Kim, Changick},
    journal={arXiv preprint arXiv:2111.04371},
    year={2021}
    }

Acknowledgement

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023