3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

Overview

3DIAS_Pytorch

This repository contains the official code to reproduce the results from the paper:

3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

[project page] [arXiv]

Installation

Clone this repository into any place you want.

git clone https://github.com/myavartanoo/3DIAS_PyTorch.git
cd 3DIAS_Pytorch

Dependencies

  • Python 3.8.5
  • PyTorch 1.7.1
  • numpy
  • Pillow
  • open3d
  • PyMCubes (or build this repo)

Install dependencies in a conda environment.

conda create -n 3dias python=3.8
conda activate 3dias

pip install -r requirements.txt

Pretrained model

Download config.json and checkpoint-epoch#.pth from below links and save in weigths folder. Note that we get Multi-class weight by training with all-classes and Single-class weight by training with each class

Multi-class

Dropbox or Mirror

Single-class

To download all the single-class weigths, run

sh download_weights.sh

Or you can get the weights one-by-one.

airplane / bench / cabinet / car / chair / display / lamp / speaker / rifle / sofa / table / phone / vessel

Quickstart (Demo)

You can now test our demo code on the provided input images in the input folder. (Or you can use other images in shapeNet.) To this end, simply run,

.png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" ">
CUDA_VISIBLE_DEVICES=0 python demo.py --inputimg "./input/
    
     .png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" 

    

The result meshes are saved in output folder. (We've created a few example meshes)

  • total.ply is a whole mesh
  • parts_.ply are meshes for parts To see the mesh, you can use meshlab

If you want to visualize meshes with open3d, run with --visualize option as below.

.png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" --visualize ">
CUDA_VISIBLE_DEVICES=0 python demo.py --inputimg "./input/
    
     .png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" --visualize

    

The preprocessed dataset, training, testing code will be distributed soon.

Citation

If you find our code or paper useful, please consider citing

@inproceedings{3DIAS,
    title = {3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces},
    author = {Mohsen Yavartanoo, JaeYoung Chung, Reyhaneh Neshatavar, Kyoung Mu Lee},
    booktitle = {Proceedings IEEE Conf. on International Conference on Computer Vision (ICCV)},
    year = {2021}
}
Owner
Mohsen Yavartanoo
I am a master student at Seoul National University. My research interest is, Computer Vision, Deep Learning, 3D Objection Recognition, 3D Object Detection.
Mohsen Yavartanoo
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022