PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Overview

Future urban scene generation through vehicle synthesis

This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Through Vehicle Synthesis" [arXiv]

Model architecture

Our framework is composed by two stages:

  1. Interpretable information extraction: high level interpretable information is gathered from raw RGB frames (bounding boxes, trajectories, keypoints).
  2. Novel view completion: condition a reprojected 3D model with the original 2D appearance.

Multi stage pipeline

Abstract

In this work we propose a deep learning pipeline to predict the visual future appearance of an urban scene. Despite recent advances, generating the entire scene in an end-to-end fashion is still far from being achieved. Instead, here we follow a two stage approach, where interpretable information are included in the loop and each actor is modelled independently. We leverage a per-object novel view synthesis paradigm; i.e. generating a synthetic representation of an object undergoing a geometrical roto-translation in the 3D space. Our model can be easily conditioned with constraints (e.g. input trajectories) provided by state-of-the-art tracking methods or by the user.

Sequence result example


Code

Code was tested with an Anaconda environment (Python version 3.6) on both Linux and Windows based systems.

Install

Run the following commands to install all requirements in a new virtual environment:

conda create -n <env_name> python=3.6
conda activate <env_name>
pip install -r requirements.txt

Install PyTorch package (version 1.3 or above).

How to run test

To run the demo of our project, please firstly download all the required data at this link and save them in a of your choice. We tested our pipeline on the Cityflow dataset that already have annotated bounding boxes and trajectories of vehicles.

The test script is run_test.py that expects some arguments as mandatory: video, 3D keypoints and checkpoints directories.

python run_test.py <data_dir>/<video_dir> <data_dir>/pascal_cads <data_dir>/checkpoints --det_mode ssd512|yolo3|mask_rcnn --track_mode tc|deepsort|moana --bbox_scale 1.15 --device cpu|cuda

Add the parameter --inpaint to use the inpainting on the vehicle instead of the static background.

Description and GUI usage

If everything went well, you should see the main GUI in which you can choose whichever vehicle you want that was detected in the video frame or change the video frame.

GUI window

The commands working on this window are:

  1. RIGHT ARROW = go to next frame
  2. LEFT ARROW = go to previous frame
  3. SINGLE MOUSE LEFT BUTTON CLICK = visualize car trajectory
  4. BACKSPACE = delete the drawn trajectories
  5. DOUBLE MOUSE LEFT BUTTON CLICK = select one of the vehicles bounding boxes

Once you selected some vehicles of your chioce by double-clicking in their bounding boxes, you can push the RUN button to start the inference. The resulting frames will be saved in ./results directory.

Cite

If you find this repository useful for your research, please cite the following paper:

@inproceedings{simoni2021future,
  title={Future urban scenes generation through vehicles synthesis},
  author={Simoni, Alessandro and Bergamini, Luca and Palazzi, Andrea and Calderara, Simone and Cucchiara, Rita},
  booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
  pages={4552--4559},
  year={2021},
  organization={IEEE}
}
Owner
Alessandro Simoni
PhD Student @ University of Modena and Reggio Emilia (@aimagelab)
Alessandro Simoni
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
Akshat Surolia 2 May 11, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022