PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Overview

Future urban scene generation through vehicle synthesis

This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Through Vehicle Synthesis" [arXiv]

Model architecture

Our framework is composed by two stages:

  1. Interpretable information extraction: high level interpretable information is gathered from raw RGB frames (bounding boxes, trajectories, keypoints).
  2. Novel view completion: condition a reprojected 3D model with the original 2D appearance.

Multi stage pipeline

Abstract

In this work we propose a deep learning pipeline to predict the visual future appearance of an urban scene. Despite recent advances, generating the entire scene in an end-to-end fashion is still far from being achieved. Instead, here we follow a two stage approach, where interpretable information are included in the loop and each actor is modelled independently. We leverage a per-object novel view synthesis paradigm; i.e. generating a synthetic representation of an object undergoing a geometrical roto-translation in the 3D space. Our model can be easily conditioned with constraints (e.g. input trajectories) provided by state-of-the-art tracking methods or by the user.

Sequence result example


Code

Code was tested with an Anaconda environment (Python version 3.6) on both Linux and Windows based systems.

Install

Run the following commands to install all requirements in a new virtual environment:

conda create -n <env_name> python=3.6
conda activate <env_name>
pip install -r requirements.txt

Install PyTorch package (version 1.3 or above).

How to run test

To run the demo of our project, please firstly download all the required data at this link and save them in a of your choice. We tested our pipeline on the Cityflow dataset that already have annotated bounding boxes and trajectories of vehicles.

The test script is run_test.py that expects some arguments as mandatory: video, 3D keypoints and checkpoints directories.

python run_test.py <data_dir>/<video_dir> <data_dir>/pascal_cads <data_dir>/checkpoints --det_mode ssd512|yolo3|mask_rcnn --track_mode tc|deepsort|moana --bbox_scale 1.15 --device cpu|cuda

Add the parameter --inpaint to use the inpainting on the vehicle instead of the static background.

Description and GUI usage

If everything went well, you should see the main GUI in which you can choose whichever vehicle you want that was detected in the video frame or change the video frame.

GUI window

The commands working on this window are:

  1. RIGHT ARROW = go to next frame
  2. LEFT ARROW = go to previous frame
  3. SINGLE MOUSE LEFT BUTTON CLICK = visualize car trajectory
  4. BACKSPACE = delete the drawn trajectories
  5. DOUBLE MOUSE LEFT BUTTON CLICK = select one of the vehicles bounding boxes

Once you selected some vehicles of your chioce by double-clicking in their bounding boxes, you can push the RUN button to start the inference. The resulting frames will be saved in ./results directory.

Cite

If you find this repository useful for your research, please cite the following paper:

@inproceedings{simoni2021future,
  title={Future urban scenes generation through vehicles synthesis},
  author={Simoni, Alessandro and Bergamini, Luca and Palazzi, Andrea and Calderara, Simone and Cucchiara, Rita},
  booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
  pages={4552--4559},
  year={2021},
  organization={IEEE}
}
Owner
Alessandro Simoni
PhD Student @ University of Modena and Reggio Emilia (@aimagelab)
Alessandro Simoni
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

1 Dec 30, 2021
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023