PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Overview

Future urban scene generation through vehicle synthesis

This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Through Vehicle Synthesis" [arXiv]

Model architecture

Our framework is composed by two stages:

  1. Interpretable information extraction: high level interpretable information is gathered from raw RGB frames (bounding boxes, trajectories, keypoints).
  2. Novel view completion: condition a reprojected 3D model with the original 2D appearance.

Multi stage pipeline

Abstract

In this work we propose a deep learning pipeline to predict the visual future appearance of an urban scene. Despite recent advances, generating the entire scene in an end-to-end fashion is still far from being achieved. Instead, here we follow a two stage approach, where interpretable information are included in the loop and each actor is modelled independently. We leverage a per-object novel view synthesis paradigm; i.e. generating a synthetic representation of an object undergoing a geometrical roto-translation in the 3D space. Our model can be easily conditioned with constraints (e.g. input trajectories) provided by state-of-the-art tracking methods or by the user.

Sequence result example


Code

Code was tested with an Anaconda environment (Python version 3.6) on both Linux and Windows based systems.

Install

Run the following commands to install all requirements in a new virtual environment:

conda create -n <env_name> python=3.6
conda activate <env_name>
pip install -r requirements.txt

Install PyTorch package (version 1.3 or above).

How to run test

To run the demo of our project, please firstly download all the required data at this link and save them in a of your choice. We tested our pipeline on the Cityflow dataset that already have annotated bounding boxes and trajectories of vehicles.

The test script is run_test.py that expects some arguments as mandatory: video, 3D keypoints and checkpoints directories.

python run_test.py <data_dir>/<video_dir> <data_dir>/pascal_cads <data_dir>/checkpoints --det_mode ssd512|yolo3|mask_rcnn --track_mode tc|deepsort|moana --bbox_scale 1.15 --device cpu|cuda

Add the parameter --inpaint to use the inpainting on the vehicle instead of the static background.

Description and GUI usage

If everything went well, you should see the main GUI in which you can choose whichever vehicle you want that was detected in the video frame or change the video frame.

GUI window

The commands working on this window are:

  1. RIGHT ARROW = go to next frame
  2. LEFT ARROW = go to previous frame
  3. SINGLE MOUSE LEFT BUTTON CLICK = visualize car trajectory
  4. BACKSPACE = delete the drawn trajectories
  5. DOUBLE MOUSE LEFT BUTTON CLICK = select one of the vehicles bounding boxes

Once you selected some vehicles of your chioce by double-clicking in their bounding boxes, you can push the RUN button to start the inference. The resulting frames will be saved in ./results directory.

Cite

If you find this repository useful for your research, please cite the following paper:

@inproceedings{simoni2021future,
  title={Future urban scenes generation through vehicles synthesis},
  author={Simoni, Alessandro and Bergamini, Luca and Palazzi, Andrea and Calderara, Simone and Cucchiara, Rita},
  booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
  pages={4552--4559},
  year={2021},
  organization={IEEE}
}
Owner
Alessandro Simoni
PhD Student @ University of Modena and Reggio Emilia (@aimagelab)
Alessandro Simoni
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022