Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Overview

Swin-Transformer-Tensorflow

A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" to TensorFlow 2.

The official Pytorch implementation can be found here.

Introduction:

Swin Transformer Architecture Diagram

Swin Transformer (the name Swin stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It is basically a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.

Swin Transformer achieves strong performance on COCO object detection (58.7 box AP and 51.1 mask AP on test-dev) and ADE20K semantic segmentation (53.5 mIoU on val), surpassing previous models by a large margin.

Usage:

1. To Run a Pre-trained Swin Transformer

Swin-T:

python main.py --cfg configs/swin_tiny_patch4_window7_224.yaml --include_top 1 --resume 1 --weights_type imagenet_1k

Swin-S:

python main.py --cfg configs/swin_small_patch4_window7_224.yaml --include_top 1 --resume 1 --weights_type imagenet_1k

Swin-B:

python main.py --cfg configs/swin_base_patch4_window7_224.yaml --include_top 1 --resume 1 --weights_type imagenet_1k

The possible options for cfg and weights_type are:

cfg weights_type 22K model 1K Model
configs/swin_tiny_patch4_window7_224.yaml imagenet_1k - github
configs/swin_small_patch4_window7_224.yaml imagenet_1k - github
configs/swin_base_patch4_window7_224.yaml imagenet_1k - github
configs/swin_base_patch4_window12_384.yaml imagenet_1k - github
configs/swin_base_patch4_window7_224.yaml imagenet_22kto1k - github
configs/swin_base_patch4_window12_384.yaml imagenet_22kto1k - github
configs/swin_large_patch4_window7_224.yaml imagenet_22kto1k - github
configs/swin_large_patch4_window12_384.yaml imagenet_22kto1k - github
configs/swin_base_patch4_window7_224.yaml imagenet_22k github -
configs/swin_base_patch4_window12_384.yaml imagenet_22k github -
configs/swin_large_patch4_window7_224.yaml imagenet_22k github -
configs/swin_large_patch4_window12_384.yaml imagenet_22k github -

2. Create custom models

To create a custom classification model:

import argparse

import tensorflow as tf

from config import get_config
from models.build import build_model

parser = argparse.ArgumentParser('Custom Swin Transformer')

parser.add_argument(
    '--cfg',
    type=str,
    metavar="FILE",
    help='path to config file',
    default="CUSTOM_YAML_FILE_PATH"
)
parser.add_argument(
    '--resume',
    type=int,
    help='Whether or not to resume training from pretrained weights',
    choices={0, 1},
    default=1,
)
parser.add_argument(
    '--weights_type',
    type=str,
    help='Type of pretrained weight file to load including number of classes',
    choices={"imagenet_1k", "imagenet_22k", "imagenet_22kto1k"},
    default="imagenet_1k",
)

args = parser.parse_args()
custom_config = get_config(args, include_top=False)

swin_transformer = tf.keras.Sequential([
    build_model(config=custom_config, load_pretrained=args.resume, weights_type=args.weights_type),
    tf.keras.layers.Dense(CUSTOM_NUM_CLASSES)
)

Model ouputs are logits, so don't forget to include softmax in training/inference!!

You can easily customize the model configs with custom YAML files. Predefined YAML files provided by Microsoft are located in the configs directory.

3. Convert PyTorch pretrained weights into Tensorflow checkpoints

We provide a python script with which we convert official PyTorch weights into Tensorflow checkpoints.

$ python convert_weights.py --cfg config_file --weights the_path_to_pytorch_weights --weights_type type_of_pretrained_weights --output the_path_to_output_tf_weights

TODO:

  • Translate model code over to TensorFlow
  • Load PyTorch pretrained weights into TensorFlow model
  • Write trainer code
  • Reproduce results presented in paper
    • Object Detection
  • Reproduce training efficiency of official code in TensorFlow

Citations:

@misc{liu2021swin,
      title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, 
      author={Ze Liu and Yutong Lin and Yue Cao and Han Hu and Yixuan Wei and Zheng Zhang and Stephen Lin and Baining Guo},
      year={2021},
      eprint={2103.14030},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

Non-Official Pytorch implementation of
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF ๐Ÿพ Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

https://arxiv.org/abs/2102.11005
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

Comments
  • Custom Swin Transformer: error: unrecognized arguments

    Custom Swin Transformer: error: unrecognized arguments

    parser = argparse.ArgumentParser('Custom Swin Transformer')

    parser.add_argument( '--cfg', type=str, metavar="FILE", help='/content/Swin-Transformer-Tensorflow/configs/swin_tiny_patch4_window7_224.yaml', default="CUSTOM_YAML_FILE_PATH" ) parser.add_argument( '--resume', type=int, help=1, choices={0, 1}, default=1, ) parser.add_argument( '--weights_type', type=str, help='imagenet_22k', choices={"imagenet_1k", "imagenet_22k", "imagenet_22kto1k"}, default="imagenet_1k", )

    args = parser.parse_args() custom_config = get_config(args, include_top=False)

    i am trying to use it but it throws an error below

    usage: Custom Swin Transformer [-h] [--cfg FILE] [--resume {0,1}] [--weights_type {imagenet_22kto1k,imagenet_1k,imagenet_22k}] Custom Swin Transformer: error: unrecognized arguments: -f /root/.local/share/jupyter/runtime/kernel-ee309a98-1f20-4bb7-aa12-c2980aea076c.json An exception has occurred, use %tb to see the full traceback.

    SystemExit: 2

    opened by AliKayhanAtay 1
  • train dataset

    train dataset

    Thank you for Thank you for providing your code. I've been running the pretrained model, and I'd like to know how to learn about custom data from the code you provided and how to transfer learning to custom data using the pretrained model. Thank you.

    opened by hoyeoung 1
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! ๐ŸŽ„ ๐ŸŽ… To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm ร…gren 5 Dec 29, 2022
๐Ÿ”ฎ Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022