This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Overview

Predicting Patient Outcomes with Graph Representation Learning

This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning. You can watch a video of the spotlight talk at W3PHIAI (AAAI workshop) here:

Watch the video

Citation

If you use this code or the models in your research, please cite the following:

@misc{rocheteautong2021,
      title={Predicting Patient Outcomes with Graph Representation Learning}, 
      author={Emma Rocheteau and Catherine Tong and Petar Veličković and Nicholas Lane and Pietro Liò},
      year={2021},
      eprint={2101.03940},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Motivation

Recent work on predicting patient outcomes in the Intensive Care Unit (ICU) has focused heavily on the physiological time series data, largely ignoring sparse data such as diagnoses and medications. When they are included, they are usually concatenated in the late stages of a model, which may struggle to learn from rarer disease patterns. Instead, we propose a strategy to exploit diagnoses as relational information by connecting similar patients in a graph. To this end, we propose LSTM-GNN for patient outcome prediction tasks: a hybrid model combining Long Short-Term Memory networks (LSTMs) for extracting temporal features and Graph Neural Networks (GNNs) for extracting the patient neighbourhood information. We demonstrate that LSTM-GNNs outperform the LSTM-only baseline on length of stay prediction tasks on the eICU database. More generally, our results indicate that exploiting information from neighbouring patient cases using graph neural networks is a promising research direction, yielding tangible returns in supervised learning performance on Electronic Health Records.

Pre-Processing Instructions

eICU Pre-Processing

  1. To run the sql files you must have the eICU database set up: https://physionet.org/content/eicu-crd/2.0/.

  2. Follow the instructions: https://eicu-crd.mit.edu/tutorials/install_eicu_locally/ to ensure the correct connection configuration.

  3. Replace the eICU_path in paths.json to a convenient location in your computer, and do the same for eICU_preprocessing/create_all_tables.sql using find and replace for '/Users/emmarocheteau/PycharmProjects/eICU-GNN-LSTM/eICU_data/'. Leave the extra '/' at the end.

  4. In your terminal, navigate to the project directory, then type the following commands:

    psql 'dbname=eicu user=eicu options=--search_path=eicu'
    

    Inside the psql console:

    \i eICU_preprocessing/create_all_tables.sql
    

    This step might take a couple of hours.

    To quit the psql console:

    \q
    
  5. Then run the pre-processing scripts in your terminal. This will need to run overnight:

    python3 -m eICU_preprocessing.run_all_preprocessing
    

Graph Construction

To make the graphs, you can use the following scripts:

This is to make most of the graphs that we use. You can alter the arguments given to this script.

python3 -m graph_construction.create_graph --freq_adjust --penalise_non_shared --k 3 --mode k_closest

Write the diagnosis strings into eICU_data folder:

python3 -m graph_construction.get_diagnosis_strings

Get the bert embeddings:

python3 -m graph_construction.bert

Create the graph from the bert embeddings:

python3 -m graph_construction.create_bert_graph --k 3 --mode k_closest

Alternatively, you can request to download our graphs using this link: https://drive.google.com/drive/folders/1yWNLhGOTPhu6mxJRjKCgKRJCJjuToBS4?usp=sharing

Training the ML Models

Before proceeding to training the ML models, do the following.

  1. Define data_dir, graph_dir, log_path and ray_dir in paths.json to convenient locations.

  2. Run the following to unpack the processed eICU data into mmap files for easy loading during training. The mmap files will be saved in data_dir.

    python3 -m src.dataloader.convert
    

The following commands train and evaluate the models introduced in our paper.

N.B.

  • The models are structured using pytorch-lightning. Graph neural networks and neighbourhood sampling are implemented using pytorch-geometric.

  • Our models assume a default graph which is made with k=3 under a k-closest scheme. If you wish to use other graphs, refer to read_graph_edge_list in src/dataloader/pyg_reader.py to add a reference handle to version2filename for your graph.

  • The default task is In-House-Mortality Prediction (ihm), add --task los to the command to perform the Length-of-Stay Prediction (los) task instead.

  • These commands use the best set of hyperparameters; To use other hyperparameters, remove --read_best from the command and refer to src/args.py.

a. LSTM-GNN

The following runs the training and evaluation for LSTM-GNN models. --gnn_name can be set as gat, sage, or mpnn. When mpnn is used, add --ns_sizes 10 to the command.

python3 -m train_ns_lstmgnn --bilstm --ts_mask --add_flat --class_weights --gnn_name gat --add_diag --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.lstmgnn_search --bilstm --ts_mask --add_flat --class_weights  --gnn_name gat --add_diag

b. Dynamic LSTM-GNN

The following runs the training & evaluation for dynamic LSTM-GNN models. --gnn_name can be set as gcn, gat, or mpnn.

python3 -m train_dynamic --bilstm --random_g --ts_mask --add_flat --class_weights --gnn_name mpnn --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.dynamic_lstmgnn_search --bilstm --random_g --ts_mask --add_flat --class_weights --gnn_name mpnn

c. GNN

The following runs the GNN models (with neighbourhood sampling). --gnn_name can be set as gat, sage, or mpnn. When mpnn is used, add --ns_sizes 10 to the command.

python3 -m train_ns_gnn --ts_mask --add_flat --class_weights --gnn_name gat --add_diag --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.ns_gnn_search --ts_mask --add_flat --class_weights --gnn_name gat --add_diag

d. LSTM (Baselines)

The following runs the baseline bi-LSTMs. To remove diagnoses from the input vector, remove --add_diag from the command.

python3 -m train_ns_lstm --bilstm --ts_mask --add_flat --class_weights --num_workers 0 --add_diag --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.lstm_search --bilstm --ts_mask --add_flat --class_weights --num_workers 0 --add_diag
Owner
Emma Rocheteau
Computer Science PhD Student at Cambridge
Emma Rocheteau
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022