This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Overview

Predicting Patient Outcomes with Graph Representation Learning

This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning. You can watch a video of the spotlight talk at W3PHIAI (AAAI workshop) here:

Watch the video

Citation

If you use this code or the models in your research, please cite the following:

@misc{rocheteautong2021,
      title={Predicting Patient Outcomes with Graph Representation Learning}, 
      author={Emma Rocheteau and Catherine Tong and Petar Veličković and Nicholas Lane and Pietro Liò},
      year={2021},
      eprint={2101.03940},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Motivation

Recent work on predicting patient outcomes in the Intensive Care Unit (ICU) has focused heavily on the physiological time series data, largely ignoring sparse data such as diagnoses and medications. When they are included, they are usually concatenated in the late stages of a model, which may struggle to learn from rarer disease patterns. Instead, we propose a strategy to exploit diagnoses as relational information by connecting similar patients in a graph. To this end, we propose LSTM-GNN for patient outcome prediction tasks: a hybrid model combining Long Short-Term Memory networks (LSTMs) for extracting temporal features and Graph Neural Networks (GNNs) for extracting the patient neighbourhood information. We demonstrate that LSTM-GNNs outperform the LSTM-only baseline on length of stay prediction tasks on the eICU database. More generally, our results indicate that exploiting information from neighbouring patient cases using graph neural networks is a promising research direction, yielding tangible returns in supervised learning performance on Electronic Health Records.

Pre-Processing Instructions

eICU Pre-Processing

  1. To run the sql files you must have the eICU database set up: https://physionet.org/content/eicu-crd/2.0/.

  2. Follow the instructions: https://eicu-crd.mit.edu/tutorials/install_eicu_locally/ to ensure the correct connection configuration.

  3. Replace the eICU_path in paths.json to a convenient location in your computer, and do the same for eICU_preprocessing/create_all_tables.sql using find and replace for '/Users/emmarocheteau/PycharmProjects/eICU-GNN-LSTM/eICU_data/'. Leave the extra '/' at the end.

  4. In your terminal, navigate to the project directory, then type the following commands:

    psql 'dbname=eicu user=eicu options=--search_path=eicu'
    

    Inside the psql console:

    \i eICU_preprocessing/create_all_tables.sql
    

    This step might take a couple of hours.

    To quit the psql console:

    \q
    
  5. Then run the pre-processing scripts in your terminal. This will need to run overnight:

    python3 -m eICU_preprocessing.run_all_preprocessing
    

Graph Construction

To make the graphs, you can use the following scripts:

This is to make most of the graphs that we use. You can alter the arguments given to this script.

python3 -m graph_construction.create_graph --freq_adjust --penalise_non_shared --k 3 --mode k_closest

Write the diagnosis strings into eICU_data folder:

python3 -m graph_construction.get_diagnosis_strings

Get the bert embeddings:

python3 -m graph_construction.bert

Create the graph from the bert embeddings:

python3 -m graph_construction.create_bert_graph --k 3 --mode k_closest

Alternatively, you can request to download our graphs using this link: https://drive.google.com/drive/folders/1yWNLhGOTPhu6mxJRjKCgKRJCJjuToBS4?usp=sharing

Training the ML Models

Before proceeding to training the ML models, do the following.

  1. Define data_dir, graph_dir, log_path and ray_dir in paths.json to convenient locations.

  2. Run the following to unpack the processed eICU data into mmap files for easy loading during training. The mmap files will be saved in data_dir.

    python3 -m src.dataloader.convert
    

The following commands train and evaluate the models introduced in our paper.

N.B.

  • The models are structured using pytorch-lightning. Graph neural networks and neighbourhood sampling are implemented using pytorch-geometric.

  • Our models assume a default graph which is made with k=3 under a k-closest scheme. If you wish to use other graphs, refer to read_graph_edge_list in src/dataloader/pyg_reader.py to add a reference handle to version2filename for your graph.

  • The default task is In-House-Mortality Prediction (ihm), add --task los to the command to perform the Length-of-Stay Prediction (los) task instead.

  • These commands use the best set of hyperparameters; To use other hyperparameters, remove --read_best from the command and refer to src/args.py.

a. LSTM-GNN

The following runs the training and evaluation for LSTM-GNN models. --gnn_name can be set as gat, sage, or mpnn. When mpnn is used, add --ns_sizes 10 to the command.

python3 -m train_ns_lstmgnn --bilstm --ts_mask --add_flat --class_weights --gnn_name gat --add_diag --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.lstmgnn_search --bilstm --ts_mask --add_flat --class_weights  --gnn_name gat --add_diag

b. Dynamic LSTM-GNN

The following runs the training & evaluation for dynamic LSTM-GNN models. --gnn_name can be set as gcn, gat, or mpnn.

python3 -m train_dynamic --bilstm --random_g --ts_mask --add_flat --class_weights --gnn_name mpnn --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.dynamic_lstmgnn_search --bilstm --random_g --ts_mask --add_flat --class_weights --gnn_name mpnn

c. GNN

The following runs the GNN models (with neighbourhood sampling). --gnn_name can be set as gat, sage, or mpnn. When mpnn is used, add --ns_sizes 10 to the command.

python3 -m train_ns_gnn --ts_mask --add_flat --class_weights --gnn_name gat --add_diag --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.ns_gnn_search --ts_mask --add_flat --class_weights --gnn_name gat --add_diag

d. LSTM (Baselines)

The following runs the baseline bi-LSTMs. To remove diagnoses from the input vector, remove --add_diag from the command.

python3 -m train_ns_lstm --bilstm --ts_mask --add_flat --class_weights --num_workers 0 --add_diag --read_best

The following runs a hyperparameter search.

python3 -m src.hyperparameters.lstm_search --bilstm --ts_mask --add_flat --class_weights --num_workers 0 --add_diag
Owner
Emma Rocheteau
Computer Science PhD Student at Cambridge
Emma Rocheteau
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Özlem Taşkın 0 Feb 23, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022