Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Related tags

Deep LearningPTSNet
Overview

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yongchao Gong, Chang Huang, Wenyu Liu, Xinggang Wang.(* means equal contribution)

This code is the implementation mainly for DAVIS 2017 dataset. For more detail, please refer to our paper.

Architecture


Overview of our proposed PTSNet for video object segmentation. OPN is designed for generating proposals of the interested objects and OTN aims to distinguish which one of the proposals is the best. Finally, DRSN does the final pixel level tracking(segmentation) task. Note in our implementation we couple OPN and OTN as a whole network, and spearate DRSN out under engineering consideration.

Usage

Preparation

  1. Install PyTorch 1.0 and necessary libraries like opencv, PIL etc.

  2. There are some native CUDA implementations, InPlace-ABN and MaskRCNN Operators, which must be compiled at the very start.

    # Before you compile, you need to figure out several things:
    # - The CUDA kernels supported by your GPU, here we use `sm_52`, `sm_61` and `sm_70` for NVIDIA Titan V.
    # - `cuda` and `nvcc` paths in your operating system, which exist usually in `/usr/local/cuda` and `/usr/local/cuda/bin/nvcc` respectively.
    # InPlace-ABN_0.4   (PyTorch 0.4)
    cd model/inplace_ABN_0.4
    bash build.sh
    # OR you could choose the 1.0 version of inplace ABN.
    # InPlace-ABN_1.0   (PyTorch 1.0)
    cd model/inplace_ABN    # It is dynamically compiled when running (gcc > 4.9)
    
    # MaskRCNN Operators (PyTorch 0.4)
    cd coupled_otn_opn/tracking/maskrcnn/lib
    bash make.sh
  3. You can train PTSNet from scratch or just evaluate our pretrained model.

    • Train it from scratch, you need to download:

       # DRSN: wget "https://download.pytorch.org/models/resnet50-19c8e357.pth" -O drsn/init_models/resnet50-19c8e357.pth
       # OPN: wget "https://drive.google.com/open?id=1ma1fNmEvS9dJLOIcm1FRzYofVS_t3aI3" -O coupled_otn_opn/tracking/maskrcnn/data/X-152-32x8d-IN5k.pkl
       # If you want to use our pretrained OTN:
       #   wget https://drive.google.com/open?id=12bF1dRlEUZoQz3Qcr2WD3ojqNHzbCrjf, put it into `coupled_otn_opn/models/mdnet_davis_50cyche.pth`
       # Else please modify from py-MDNet(https://github.com/HyeonseobNam/py-MDNet) to train OTN on DAVIS by yourself.
    • If you want to use our pretrained model to do the evaluation, you need to download:

       # DRSN: https://drive.google.com/open?id=116yXnqX43BZ7kEgdzUhIeTSn1dbvcE2F, put it into `drsn/snapshots/drsn_yvos_10w_davis_3p5w.pth`
       # OPN: wget "https://drive.google.com/open?id=1ma1fNmEvS9dJLOIcm1FRzYofVS_t3aI3" -O coupled_otn_opn/tracking/maskrcnn/data/X-152-32x8d-IN5k.pkl
       # OTN: https://drive.google.com/open?id=12bF1dRlEUZoQz3Qcr2WD3ojqNHzbCrjf, put it into `coupled_otn_opn/models/mdnet_davis_50cycle.pth`
  4. Dataset

    • YouTube-VOS: Download from YouTube-VOS, note we only need the training part(train_all_frames.zip), totally about 41G. Unzip, move and rename it to drsn/dataset/yvos.
    • DAVIS: Download from DAVIS, note we only need the 480p version(DAVIS-2017-trainval-480p.zip). Unzip, move and rename it to drsn/dataset/DAVIS/trainval and coupled_otn_opn/DAVIS/trainval. Here you need to make a subdirectory of trainval directory to store the dataset.

    And make sure to put the files as the following structure:

    .
    ├── drsn
    │   ├── dataset
    │   │   ├── DAVIS
    │   │   │   └── trainval
    │   │   │       ├── Annotations
    │   │   │       ├── ImageSets
    │   │   │       └── JPEGImages
    │   │   └── yvos
    │   │       └── train_all_frames
    │   ├── init_model
    │   │   └── resnet50-19c8e357.pth
    │   └── snapshots
    │       └── drsn_yvos_10w_davis_3p5w.pth
    └── coupled_otn_opn
        ├── DAVIS
        │   └── trainval
        ├── models
        │   └── mdnet_davis_50cycle.pth
        └── tracking
            └── maskrcnn
                └── data
                    └── X-152-32x8d-FPN-IN5k.pkl
    

Train and Evaluate

  • Firstly, check the directory of coupled_otn_opn and follow the README.md inside to generate our proposals. You can also skip this step for we have provided generated proposals in drsn/dataset/result_davis directory.
  • Secondly, enter drsn and check do_train_eval.sh to train and evaluate.
  • Finally, we also provide result masks by our PTSNet in result-masks-GoogleDrive. The quantitative results are measured by DAVIS official matlab toolbox.
J Mean F Mean G Mean
Avg 71.6 77.7 74.7

Acknowledgment

The work was mainly done during an internship at Horizon Robotics.

Citing PTSNet

If you find PTSNet useful in your research, please consider citing:

@article{ptsnet2019,
        title={Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation},
        author={Zhou, Qiang and Huang, Zilong and Huang, Lichao and Han, Shen and Gong, Yongchao and Huang, Chang and Liu, Wenyu and Wang, Xinggang},
        journal = {arXiv preprint arXiv:1907.01203v2},
        year={2019}
        }

Thanks to the Third Party Libs

Owner
Forest
If a bullet's going to get you, it has already been fired.
Forest
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Contextual Attention Network: Transformer Meets U-Net

Contextual Attention Network: Transformer Meets U-Net Contexual attention network for medical image segmentation with state of the art results on skin

Reza Azad 67 Nov 28, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022