A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

Overview

CLEVR Dataset Generation

This is the code used to generate the CLEVR dataset as described in the paper:

CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Fei-Fei Li, Larry Zitnick, Ross Girshick
Presented at CVPR 2017

Code and pretrained models for the baselines used in the paper can be found here.

You can use this code to render synthetic images and compositional questions for those images, like this:

Q: How many small spheres are there?
A: 2

Q: What number of cubes are small things or red metal objects?
A: 2

Q: Does the metal sphere have the same color as the metal cylinder?
A: Yes

Q: Are there more small cylinders than metal things?
A: No

Q: There is a cylinder that is on the right side of the large yellow object behind the blue ball; is there a shiny cube in front of it?
A: Yes

If you find this code useful in your research then please cite

@inproceedings{johnson2017clevr,
  title={CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning},
  author={Johnson, Justin and Hariharan, Bharath and van der Maaten, Laurens
          and Fei-Fei, Li and Zitnick, C Lawrence and Girshick, Ross},
  booktitle={CVPR},
  year={2017}
}

All code was developed and tested on OSX and Ubuntu 16.04.

Step 1: Generating Images

First we render synthetic images using Blender, outputting both rendered images as well as a JSON file containing ground-truth scene information for each image.

Blender ships with its own installation of Python which is used to execute scripts that interact with Blender; you'll need to add the image_generation directory to Python path of Blender's bundled Python. The easiest way to do this is by adding a .pth file to the site-packages directory of Blender's Python, like this:

echo $PWD/image_generation >> $BLENDER/$VERSION/python/lib/python3.5/site-packages/clevr.pth

where $BLENDER is the directory where Blender is installed and $VERSION is your Blender version; for example on OSX you might run:

echo $PWD/image_generation >> /Applications/blender/blender.app/Contents/Resources/2.78/python/lib/python3.5/site-packages/clevr.pth

You can then render some images like this:

cd image_generation
blender --background --python render_images.py -- --num_images 10

On OSX the blender binary is located inside the blender.app directory; for convenience you may want to add the following alias to your ~/.bash_profile file:

alias blender='/Applications/blender/blender.app/Contents/MacOS/blender'

If you have an NVIDIA GPU with CUDA installed then you can use the GPU to accelerate rendering like this:

blender --background --python render_images.py -- --num_images 10 --use_gpu 1

After this command terminates you should have ten freshly rendered images stored in output/images like these:


The file output/CLEVR_scenes.json will contain ground-truth scene information for all newly rendered images.

You can find more details about image rendering here.

Step 2: Generating Questions

Next we generate questions, functional programs, and answers for the rendered images generated in the previous step. This step takes as input the single JSON file containing all ground-truth scene information, and outputs a JSON file containing questions, answers, and functional programs for the questions in a single JSON file.

You can generate questions like this:

cd question_generation
python generate_questions.py

The file output/CLEVR_questions.json will then contain questions for the generated images.

You can find more details about question generation here.

Owner
Facebook Research
Facebook Research
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022