This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Overview

Auto-Lambda

This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

We encourage readers to check out our project page, including more interesting discussions and insights which are not covered in our technical paper.

Multi-task Methods

We implemented all weighting and gradient-based baselines presented in the paper for computer vision tasks: Dense Prediction Tasks (for NYUv2 and CityScapes) and Multi-domain Classification Tasks (for CIFAR-100).

Specifically, we have covered the implementation of these following multi-task optimisation methods:

Weighting-based:

Gradient-based:

Note: Applying a combination of both weighting and gradient-based methods can further improve performance.

Datasets

We applied the same data pre-processing following our previous project: MTAN which experimented on:

  • NYUv2 [3 Tasks] - 13 Class Segmentation + Depth Estimation + Surface Normal. [288 x 384] Resolution.
  • CityScapes [3 Tasks] - 19 Class Segmentation + 10 Class Part Segmentation + Disparity (Inverse Depth) Estimation. [256 x 512] Resolution.

Note: We have included a new task: Part Segmentation for CityScapes dataset. The pre-processing file for CityScapes has also been included in the dataset folder.

Experiments

All experiments were written in PyTorch 1.7 and can be trained with different flags (hyper-parameters) when running each training script. We briefly introduce some important flags below.

Flag Name Usage Comments
network choose multi-task network: split, mtan both architectures are based on ResNet-50; only available in dense prediction tasks
dataset choose dataset: nyuv2, cityscapes only available in dense prediction tasks
weight choose weighting-based method: equal, uncert, dwa, autol only autol will behave differently when set to different primary tasks
grad_method choose gradient-based method: graddrop, pcgrad, cagrad weight and grad_method can be applied together
task choose primary tasks: seg, depth, normal for NYUv2, seg, part_seg, disp for CityScapes, all: a combination of all standard 3 tasks only available in dense prediction tasks
with_noise toggle on to add noise prediction task for training (to evaluate robustness in auxiliary learning setting) only available in dense prediction tasks
subset_id choose domain ID for CIFAR-100, choose -1 for the multi-task learning setting only available in CIFAR-100 tasks
autol_init initialisation of Auto-Lambda, default 0.1 only available when applying Auto-Lambda
autol_lr learning rate of Auto-Lambda, default 1e-4 for NYUv2 and 3e-5 for CityScapes only available when applying Auto-Lambda

Training Auto-Lambda in Multi-task / Auxiliary Learning Mode:

python trainer_dense.py --dataset [nyuv2, cityscapes] --task [PRIMARY_TASK] --weight autol --gpu 0   # for NYUv2 or CityScapes dataset
python trainer_cifar.py --subset_id [PRIMARY_DOMAIN_ID] --weight autol --gpu 0   # for CIFAR-100 dataset

Training in Single-task Learning Mode:

python trainer_dense_single.py --dataset [nyuv2, cityscapes] --task [PRIMARY_TASK]  --gpu 0   # for NYUv2 or CityScapes dataset
python trainer_cifar_single.py --subset_id [PRIMARY_DOMAIN_ID] --gpu 0   # for CIFAR-100 dataset

Note: All experiments in the original paper were trained from scratch without pre-training.

Benchmark

For standard 3 tasks in NYUv2 (without dense prediction task) in the multi-task learning setting with Split architecture, please follow the results below.

Method Sem. Seg. (mIOU) Depth (aErr.) Normal (mDist.) Delta MTL
Single 43.37 52.24 22.40 -
Equal 44.64 43.32 24.48 +3.57%
DWA 45.14 43.06 24.17 +4.58%
GradDrop 45.39 43.23 24.18 +4.65%
PCGrad 45.15 42.38 24.13 +5.09%
Uncertainty 45.98 41.26 24.09 +6.50%
CAGrad 46.14 41.91 23.52 +7.05%
Auto-Lambda 47.17 40.97 23.68 +8.21%
Auto-Lambda + CAGrad 48.26 39.82 22.81 +11.07%

Note: The results were averaged across three random seeds. You should expect the error range less than +/-1%.

Citation

If you found this code/work to be useful in your own research, please considering citing the following:

@article{liu2022auto-lambda,
  title={Auto-Lambda: Disentangling Dynamic Task Relationships},
  author={Liu, Shikun and James, Stephen and Davison, Andrew J and Johns, Edward},
  journal={arXiv preprint arXiv:2202.03091},
  year={2022}
}

Acknowledgement

We would like to thank @Cranial-XIX for his clean implementation for gradient-based optimisation methods.

Contact

If you have any questions, please contact [email protected].

Owner
Shikun Liu
Ph.D. Student, The Dyson Robotics Lab at Imperial College.
Shikun Liu
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022