10x faster matrix and vector operations

Overview

Bolt

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations.

If you have a large collection of mostly-dense vectors and can tolerate lossy compression, Bolt can probably save you 10-200x space and compute time.

Bolt also has theoretical guarantees bounding the errors in its approximations.

EDIT: this repo now also features the source code for MADDNESS, our shiny new algorithm for approximate matrix multiplication. MADDNESS has no Python wrapper yet, and is referred to as "mithral" in the source code. Name changed because apparently I'm the only who gets Lord of the Rings references. MADDNESS runs ridiculously fast and, under reasonable assumptions, requires zero multiply-adds. Realistically, it'll be most useful for speeding up neural net inference on CPUs, but it'll take another couple papers to get it there; we need to generalize it to convolution and write the CUDA kernels to allow GPU training.

NOTE: All below code refers to the Python wrapper for Bolt and has nothing to do with MADDNESS. It also seems to be no longer building for many people. If you want to use MADDNESS, see the Python Implementation driven by amm_main.py or C++ implementation. All code is ugly, but Python code should be pretty easy to add new AMM methods/variations to.

Installing

Python

  $ brew install swig  # for wrapping C++; use apt-get, yum, etc, if not OS X
  $ pip install numpy  # bolt installation needs numpy already present
  $ git clone https://github.com/dblalock/bolt.git
  $ cd bolt && python setup.py install
  $ pytest tests/  # optionally, run the tests

If you run into any problems, please don't hesitate to mention it in the Python build problems issue.

C++

Install Bazel, Google's open-source build system. Then

  $ git clone https://github.com/dblalock/bolt.git
  $ cd bolt/cpp && bazel run :main

The bazel run command will build the project and run the tests and benchmarks.

If you want to integrate Bolt with another C++ project, include cpp/src/include/public.hpp and add the remaining files under cpp/src to your builds. You should let me know if you're interested in doing such an integration because I'm hoping to see Bolt become part of many libraries and thus would be happy to help you.

Notes

Bolt currently only supports machines with AVX2 instructions, which basically means x86 machines from fall 2013 or later. Contributions for ARM support are welcome. Also note that the Bolt Python wrapper is currently configured to require Clang, since GCC apparently runs into issues.

How does it work?

Bolt is based on vector quantization. For details, see the Bolt paper or slides.

Benchmarks

Bolt includes a thorough set of speed and accuracy benchmarks. See the experiments/ directory. This is also what you want if you want to reproduce the results in the paper.

Note that all of the timing results use the raw C++ implementation. At present, the Python wrapper is slightly slower due to Python overhead. If you're interested in having a full-speed wrapper, let me know and I'll allocate time to making this happen.

Basic usage

X, queries = some N x D array, some iterable of length D arrays

# these are approximately equal (though the latter are shifted and scaled)
enc = bolt.Encoder(reduction='dot').fit(X)
[np.dot(X, q) for q in queries]
[enc.transform(q) for q in queries]

# same for these
enc = bolt.Encoder(reduction='l2').fit(X)
[np.sum((X - q) * (X - q), axis=1) for q in queries]
[enc.transform(q) for q in queries]

# but enc.transform() is 10x faster or more

Example: Matrix-vector multiplies

import bolt
import numpy as np
from scipy.stats import pearsonr as corr
from sklearn.datasets import load_digits
import timeit

# for simplicity, use the sklearn digits dataset; we'll split
# it into a matrix X and a set of queries Q
X, _ = load_digits(return_X_y=True)
nqueries = 20
X, Q = X[:-nqueries], X[-nqueries:]

enc = bolt.Encoder(reduction='dot', accuracy='lowest') # can tweak acc vs speed
enc.fit(X)

dot_corrs = np.empty(nqueries)
for i, q in enumerate(Q):
    dots_true = np.dot(X, q)
    dots_bolt = enc.transform(q)
    dot_corrs[i] = corr(dots_true, dots_bolt)[0]

# dot products closely preserved despite compression
print "dot product correlation: {} +/- {}".format(
    np.mean(dot_corrs), np.std(dot_corrs))  # > .97

# massive space savings
print(X.nbytes)  # 1777 rows * 64 cols * 8B = 909KB
print(enc.nbytes)  # 1777 * 2B = 3.55KB

# massive time savings (~10x here, but often >100x on larger
# datasets with less Python overhead; see the paper)
t_np = timeit.Timer(
    lambda: [np.dot(X, q) for q in Q]).timeit(5)        # ~9ms
t_bolt = timeit.Timer(
    lambda: [enc.transform(q) for q in Q]).timeit(5)    # ~800us
print "Numpy / BLAS time, Bolt time: {:.3f}ms, {:.3f}ms".format(
    t_np * 1000, t_bolt * 1000)

# can get output without offset/scaling if needed
dots_bolt = [enc.transform(q, unquantize=True) for q in Q]

Example: K-Nearest Neighbor / Maximum Inner Product Search

# search using squared Euclidean distances
# (still using the Digits dataset from above)
enc = bolt.Encoder('l2', accuracy='high').fit(X)
bolt_knn = [enc.knn(q, k_bolt) for q in Q]  # knn for each query

# search using dot product (maximum inner product search)
enc = bolt.Encoder('dot', accuracy='medium').fit(X)
bolt_knn = [enc.knn(q, k_bolt) for q in Q]  # knn for each query

Miscellaneous

Bolt stands for "Based On Lookup Tables". Feel free to use this exciting fact at parties.

Owner
Machine learning PhD Student at MIT. I build fast machine learning algorithms.
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022