Code to compute permutation and drop-column importances in Python scikit-learn models

Overview

Feature importances for scikit-learn machine learning models

By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff.

The scikit-learn Random Forest feature importances strategy is mean decrease in impurity (or gini importance) mechanism, which is unreliable. To get reliable results, use permutation importance, provided in the rfpimp package in the src dir. Install with:

pip install rfpimp

We include permutation and drop-column importance measures that work with any sklearn model. Yes, rfpimp is an increasingly-ill-suited name, but we still like it.

Description

See Beware Default Random Forest Importances for a deeper discussion of the issues surrounding feature importances in random forests (authored by Terence Parr, Kerem Turgutlu, Christopher Csiszar, and Jeremy Howard).

The mean-decrease-in-impurity importance of a feature is computed by measuring how effective the feature is at reducing uncertainty (classifiers) or variance (regressors) when creating decision trees within random forests. The problem is that this mechanism, while fast, does not always give an accurate picture of importance. Strobl et al pointed out in Bias in random forest variable importance measures: Illustrations, sources and a solution that “the variable importance measures of Breiman's original random forest method ... are not reliable in situations where potential predictor variables vary in their scale of measurement or their number of categories.”

A more reliable method is permutation importance, which measures the importance of a feature as follows. Record a baseline accuracy (classifier) or R2 score (regressor) by passing a validation set or the out-of-bag (OOB) samples through the random forest. Permute the column values of a single predictor feature and then pass all test samples back through the random forest and recompute the accuracy or R2. The importance of that feature is the difference between the baseline and the drop in overall accuracy or R2 caused by permuting the column. The permutation mechanism is much more computationally expensive than the mean decrease in impurity mechanism, but the results are more reliable.

Sample code

See the notebooks directory for things like Collinear features and Plotting feature importances.

Here's some sample Python code that uses the rfpimp package contained in the src directory. The data can be found in rent.csv, which is a subset of the data from Kaggle's Two Sigma Connect: Rental Listing Inquiries competition.

from rfpimp import *
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split

df_orig = pd.read_csv("/Users/parrt/github/random-forest-importances/notebooks/data/rent.csv")

df = df_orig.copy()

# attentuate affect of outliers in price
df['price'] = np.log(df['price'])

df_train, df_test = train_test_split(df, test_size=0.20)

features = ['bathrooms','bedrooms','longitude','latitude',
            'price']
df_train = df_train[features]
df_test = df_test[features]

X_train, y_train = df_train.drop('price',axis=1), df_train['price']
X_test, y_test = df_test.drop('price',axis=1), df_test['price']
X_train['random'] = np.random.random(size=len(X_train))
X_test['random'] = np.random.random(size=len(X_test))

rf = RandomForestRegressor(n_estimators=100, n_jobs=-1)
rf.fit(X_train, y_train)

imp = importances(rf, X_test, y_test) # permutation
viz = plot_importances(imp)
viz.view()


df_train, df_test = train_test_split(df_orig, test_size=0.20)
features = ['bathrooms','bedrooms','price','longitude','latitude',
            'interest_level']
df_train = df_train[features]
df_test = df_test[features]

X_train, y_train = df_train.drop('interest_level',axis=1), df_train['interest_level']
X_test, y_test = df_test.drop('interest_level',axis=1), df_test['interest_level']
# Add column of random numbers
X_train['random'] = np.random.random(size=len(X_train))
X_test['random'] = np.random.random(size=len(X_test))

rf = RandomForestClassifier(n_estimators=100,
                            min_samples_leaf=5,
                            n_jobs=-1,
                            oob_score=True)
rf.fit(X_train, y_train)

imp = importances(rf, X_test, y_test, n_samples=-1)
viz = plot_importances(imp)
viz.view()

Feature correlation

See Feature collinearity heatmap. We can get the Spearman's correlation matrix:

Feature dependencies

The features we use in machine learning are rarely completely independent, which makes interpreting feature importance tricky. We could compute correlation coefficients, but that only identifies linear relationships. A way to at least identify if a feature, x, is dependent on other features is to train a model using x as a dependent variable and all other features as independent variables. Because random forests give us an easy out of bag error estimate, the feature dependence functions rely on random forest models. The R^2 prediction error from the model indicates how easy it is to predict feature x using the other features. The higher the score, the more dependent feature x is.

You can also get a feature dependence matrix / heatmap that returns a non-symmetric data frame where each row is the importance of each var to the row's var used as a model target. Example:

Comments
  • SyntaxError: invalid syntax

    SyntaxError: invalid syntax

    When import rfpimp, there is an error like below

    " File "/Users/yan/anaconda/lib/python3.5/site-packages/rfpimp.py", line 518 ax.xaxis.set_major_formatter(FormatStrFormatter(f'%.{xtick_precision}f')) ^ SyntaxError: invalid syntax "

    opened by Yanjiayork 10
  • Incorrect references to sklearn?

    Incorrect references to sklearn?

    Hello,

    I have rfpimp ver 1.3.6 installed as well as sklearn 0.24.1. When I ran a script that used them, I got this error File "C:...\anaconda3\envs...\lib\site-packages\rfpimp.py", line 16, in from sklearn.ensemble.forest import _generate_unsampled_indices ModuleNotFoundError: No module named 'sklearn.ensemble.forest'

    I dug into it and found that sklearn.ensemble.forest is, in my version, sklearn.ensemble._forest and _generate_unsampled_indices does reside there. While it's possible that something is wrong on my end, my guess is that sklearn has changed? I may change rfpimp.py on my own to match sklearn. I hope it doesn't break my computer. Thanks!

    compatibility 
    opened by mgandaman 8
  • TypeError: barh() missing 1 required positional argument: 'bottom'

    TypeError: barh() missing 1 required positional argument: 'bottom'

    Installed the package and working thru your Classifier example on rents. https://github.com/parrt/random-forest-importances/blob/master/notebooks/permutation-importances-classifier.ipynb

    Immediately get the missing argument error in block 3 of the notebook. have searched the rfImp functions and do not see where it could be missing.

    lack of activity 
    opened by TNFCFA 7
  • 'deep' is an invalid keyword argument for this function

    'deep' is an invalid keyword argument for this function

    I am trying to get the feature importance of my random forest model but i keep getting the following error:

    'deep' is an invalid keyword argument for this function

    Below is the entire error output:

    TypeError Traceback (most recent call last) in () 1 #getting imortance for features using permutation importance 2 ----> 3 perm_imp_rfpimp_rf10 = permutation_importances(rf_10, train_features_x, train_labels_y, rdt10) 4 perm_imp_rfpimp_rf100 = permutation_importances(rf_100, train_features_x, train_labels_y, rdt100) 5 perm_imp_rfpimp_rf1000 = permutation_importances(rf_1000, train_features_x, train_labels_y, rdt1000)

    ~/anaconda2/envs/py36/lib/python3.6/site-packages/rfpimp.py in permutation_importances(rf, X_train, y_train, metric, n_samples) 286 287 def permutation_importances(rf, X_train, y_train, metric, n_samples=5000): --> 288 imp = permutation_importances_raw(rf, X_train, y_train, metric, n_samples) 289 I = pd.DataFrame(data={'Feature':X_train.columns, 'Importance':imp}) 290 I = I.set_index('Feature')

    ~/anaconda2/envs/py36/lib/python3.6/site-packages/rfpimp.py in permutation_importances_raw(rf, X_train, y_train, metric, n_samples) 403 404 baseline = metric(rf, X_sample, y_sample) --> 405 X_train = X_sample.copy(deep=False,axes=True) # shallow copy 406 y_train = y_sample 407 imp = []

    TypeError: 'deep' is an invalid keyword argument for this function

    My inputs involve providing a function based metric as below:

    def rdt10(rf_10,train_features_x, train_labels_y): return r2_score(train_labels_y, rf_10.predict(train_features_x))

    def rdt100(rf_100,train_features_x, train_labels_y): return r2_score(train_labels_y, rf_100.predict(train_features_x))

    def rdt1000(rf_1000,train_features_x, train_labels_y): return r2_score(train_labels_y, rf_1000.predict(train_features_x))

    and then calling it in the permutation importance function below (this is what gives the error output from above):

    perm_imp_rfpimp_rf10 = permutation_importances(rf_10, train_features_x, train_labels_y, rdt10) perm_imp_rfpimp_rf100 = permutation_importances(rf_100, train_features_x, train_labels_y, rdt100) perm_imp_rfpimp_rf1000 = permutation_importances(rf_1000, train_features_x, train_labels_y, rdt1000)

    rf_10, rf_100, rf_1000 are my random forest models using 10, 100, and 1000 estimators.

    Please help me figure out how to address this error:

    can't reproduce 
    opened by ebuka-nweke 6
  • Add missing arg to _generate_unsampled_indices

    Add missing arg to _generate_unsampled_indices

    Fixes #27

    In sklearn 0.22 sklearn._forest._generate_unsampled_indices(random_state, n_samples) changed signature to sklearn._forest._generate_unsampled_indices(random_state, n_samples, n_samples_bootstrap).

    I used the sklearn._forest._get_n_samples_bootstrap(n_samples, n_samples) with the same number of samples and passes to the new arg just to avoid raising the exception.

    compatibility 
    opened by matheusccouto 6
  • Incompatible with latest version of sklearn

    Incompatible with latest version of sklearn

    In https://github.com/scikit-learn/scikit-learn/pull/14964, modules in ensemble have been made private, breaking this line of code (forest has become _forest).

    compatibility 
    opened by yuchaoran2011 5
  • what's the difference between rfpimp.importances and rfpimp.permutation_importances?

    what's the difference between rfpimp.importances and rfpimp.permutation_importances?

    I noticed in the README that rfpimp.importances was used, whereas in this blog they used from rfpimp import permutation_importances.

    On an unrelated note, I tried both this repo's implementation of permutation importance and also eli5's implementation and got very different results. If anyone has tried both before I would like to hear your experience.

    question 
    opened by hmanz 5
  • SyntaxError in python2.7

    SyntaxError in python2.7

    Syntax error in python2.7 (it does work python3). If rfpimp is not supposed to work in 2.7, you might want to consider mentioning it in the README

    import rfpimp

    File "/Users/diegomazon/anaconda/lib/python2.7/site-packages/rfpimp.py", line 40 self.svgfilename = f"{tmp}/PimpViz_{getpid()}.svg" ^ SyntaxError: invalid syntax

    portability 
    opened by diego-mazon 5
  • Error with oob_importances with scikit-learn 0.22.1

    Error with oob_importances with scikit-learn 0.22.1

    oob_importances internally uses _generate_unsampled_indices which is a private function within scikit-learn. In scikit-learn 0.22.1 the function signature of _generate_unsampled_indices has changed from _generate_unsampled_indices(random_state, n_samples) to _generate_unsampled_indices(random_state, n_samples, n_samples_bootstrap) . This signature change can be seen here

    compatibility 
    opened by mkhan037 4
  • Feature correlation p-values and correction methods

    Feature correlation p-values and correction methods

    Wanted to get the conversation open on feature correlation, right now it just does a naive spearmanr, with no insight into the resulting p-values. Would be great to do a few things, listed below in order of importance:

    1. Introduce p-values and maybe apply the appropriate cutoffs
    2. Introduce permutation based correlation, starting off with lagged correlations for example (context is time series analysis)
    3. Introduce a probability correction method for 1 and/or 2 such as bonferroni, to account for the number of correlation estimates we're doing between features and between number of lags if we end up implementing #2.

    Happy to get the conversation going and see where we end up. Right now the feature correlation estimation is not quite stable in the context of very noisy time series data.

    enhancement 
    opened by feribg 4
  • ModuleNotFoundError: No module named 'sklearn.ensemble.forest'

    ModuleNotFoundError: No module named 'sklearn.ensemble.forest'

    Hello, I am trying to import rfpimp however I am met by the error:

    ---------------------------------------------------------------------------
    ModuleNotFoundError                       Traceback (most recent call last)
    <ipython-input-133-c95d15dec9fe> in <module>
         24 import matplotlib.patheffects as PathEffects
         25 from pandas.plotting import lag_plot
    ---> 26 from rfpimp import *
         27 
         28 # Machine Learning libraries
    
    ~/opt/anaconda3/lib/python3.8/site-packages/rfpimp.py in <module>
         13 from sklearn.ensemble import RandomForestClassifier
         14 from sklearn.ensemble import RandomForestRegressor
    ---> 15 from sklearn.ensemble.forest import _generate_unsampled_indices
         16 from sklearn.ensemble import forest
         17 from sklearn.model_selection import cross_val_score
    
    ModuleNotFoundError: No module named 'sklearn.ensemble.forest'
    

    It seems that sklearn.ensemble.forest was renamed to sklearn.ensemble._forest (see here)

    I'd have to install an older version for sklearn however that would break other dependencies I have. Is there a fix around this? Thanks

    opened by ziadzee 3
  • What's the meaning of <0 values?

    What's the meaning of <0 values?

    Just tested the code from index page, some of my features have negative values, does it mean reverse-related to target feature or something else? Thank you.

    opened by fisherss 0
  • Questions Regarding Alternative Feature Importance

    Questions Regarding Alternative Feature Importance

    How many other forms of feature importance are there, and how are they different from one another?

    • Shapley-based
      • https://github.com/slundberg/shap
      • https://github.com/iancovert/sage
    • LOFO https://github.com/aerdem4/lofo-importance
    • LIME https://github.com/marcotcr/lime
    • Gini and Split https://github.com/shionhonda/feature-importance
    • Permutation https://github.com/nestordemeure/permutationImportance
    • "Unbiased" https://github.com/ZhengzeZhou/unbiased-feature-importance
    • Morris, and Partial Dependence https://github.com/interpretml/interpret#supported-techniques

    P.S. This repo's design is absurd https://github.com/ModelOriented/DALEX

    opened by BrandonKMLee 0
  • An error occurred when the test file was run

    An error occurred when the test file was run

    I got an error running "permutation-importances-classifier", “forest” seems to be updated to “_forest” in sklearn. I changed "from sklearn.ensemble.forest import _generate_unsampled_indices" to "from sklearn.ensemble._forest import _generate_unsampled_indices" and it worked fine.

    In the same code, "unsampled_indices = _generate_unsampled_indices(tree.random_state, n_samples)" shows missing "TypeError: _generate_unsampled_indices() missing 1 required positional argument: 'n_samples_bootstrap'" when running. The function of _generate_unsampled_indices is defined as: "def _generate_unsampled_indices(random_state, n_samples, n_samples_bootstrap):".

    opened by LilWei-DU 1
  • Varying Dependency Value

    Varying Dependency Value

    When I use "feature_dependence_matrix" function to get the dependency of each independent variables, the values change every time I run the code. Specifying the number of random_state only allow me to obtain constant overall dependency regardless how many times I run the code, but the individual dependency is still changing.

    Is there any way I could obtain fix individual dependency values every time?

    Thanks!

    opened by Joprou 0
  • AttributeError: 'numpy.ndarray' object has no attribute 'columns'

    AttributeError: 'numpy.ndarray' object has no attribute 'columns'

    File "D:\python\lib\site-packages\rfpimp.py", line 143, in importances features = X_valid.columns.values AttributeError: 'numpy.ndarray' object has no attribute 'columns'

    opened by VincentOld 1
Releases(1.3.7)
  • 1.3(Oct 22, 2018)

    • Added plot_dependence_heatmap() to plot feature dependence heat maps
    • Improve feature importance plots so that the bars are always the same. You can specify a title and there is better scaling support.
    • The plotting routines return PimpViz objects that by default render the current matplotlib image via SVG, getting a much sharper image than the default PNG.
    • dropcol importance was relying on OOB scores instead of the more general model scoring/metric.
    • Added a stemplot version that mimics the bar chart for feature importance.
    • Added precision argument to the correlation heat map function.
    • Rebuilt the notebook examples and the ones that generate images for the paper.
    • Added a section to the paper that shows the feature dependence heat map applied to the breast-cancer data set.
    Source code(tar.gz)
    Source code(zip)
Owner
Terence Parr
Creator of the ANTLR parser generator. Professor at Univ of San Francisco, computer science and data science. Working mostly on machine learning stuff now.
Terence Parr
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022