This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Overview

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

This is the repository for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement". The repository is structured as the following:

  • PyPruning: This repository contains the implementations for all pruning algorithms and can be installed as a regular python package and used in other projects. For more information have a look at the Readme file in PyPruning/Readme.md and its documentation in PyPruning/docs.
  • experiment_runner: This is a simple package / script which can be used to run multiple experiments in parallel on the same machine or distributed across many different machines. It can also be installed as a regular python package and used for other projects. For more information have a look at the Readme file in experiment_runner/Readme.md.
  • {adult, bank, connect, ..., wine-quality}: Each folder contains an script init.sh which downloads the necessary files and performs pre-processing if necessary (e.g. extract archives etc.).
  • init_all.sh: Iterates over all datasets and calls the respective init.sh files. Depending on your internet connection this may take some time
  • environment.yml: Anaconda environment file which contains all dependencies. For more details see below
  • LeafRefinement.py: This is the implementation of the LeafRefinement method. We initially implemented a more complex method which uses Proximal Gradient Descent to simultaneously learn the weights and refine leaf nodes. During our experiments we discovered that leaf-refinement in iteself was enough and much simpler. We kept our old code, but implemented the LeafRefinement.py class for easier usage.
  • run.py: The script which executes the experiments. For more details see the examples below.
  • plot_results.py: The script is used explore and display results. It also creates the plots for the paper.

Getting everything ready

This git repository contains two submodules PyPruning and experiment_runner which need to be cloned first.

git clone --recurse-submodules [email protected]:sbuschjaeger/leaf-refinement-experiments.git

After the code has been obtained you need to install all dependencies. If you use Anaconda you can simply call

conda env create -f environment.yml

to prepare and activate the environment LR. After that you can install the python packages PyPruning and experiment_runner via pip:

pip install -e file:PyPruning
pip install -e file:experiment_runner

and finally activate the environment with

conda activate LR

Last you will need to get some data. If you are interested in a specific dataset you can use the accompanying init.sh script via

cd `${Dataset}`
./init.sh

or if you want to download all datasets use

./init_all.sh

Depending on your internet connection this may take some time.

Running experiments

If everything worked as expected you should now be able to run the run.py script to prune some ensembles. This script has a decent amount of parameters. See further below for an minimal working example.

  • n_jobs: Number of jobs / threads used for multiprocessing
  • base: Base learner used for experiments. Can be {RandomForestClassifier, ExtraTreesClassifier, BaggingClassifier, HeterogenousForest}. Can be a list of arguments for multiple experiments.
  • nl: Maximum number of leaf nodes (corresponds to scikit-learns max_leaf_nodes parameter)
  • dataset: Dataset used for experiment. Can be a list of arguments for multiple experiments.
  • n_estimators: Number of estimators trained for the base learner.
  • n_prune: Size of the pruned ensemble. Can be a list of arguments for multiple experiments.
  • xval: Number of cross validation runs (default is 5)
  • use_prune: If set then the script uses a train / prune / test split. If not set then the training data is also used for pruning.
  • timeout: Maximum number of seconds per run. If the runtime exceeds the provided value, stop execution (default is 5400 seconds)

Note that all base ensembles for all cross validation splits of a dataset are trained before any of the pruning algorithms are used. If you want to evaluate many datasets / hyperparameter configuration in one run this requires a lot of memory.

To train and prune forests on the magic dataset you can for example do

./run.py --dataset adult -n_estimators 256 --n_prune 2 4 8 16 32 64 128 256 --nl 64 128 256 512 1024 --n_jobs 128 --xval 5 --base RandomForestClassifier

The results are stored in ${Dataset}/results/${base}/${use_prune}/${date}/results.jsonl where ${Dataset} is the dataset (e.g. magic) and ${date} is the current time and date.

In order to re-produce the experiments form the paper you can call:

./run.py --dataset adult anura bank chess connect eeg elec postures japanese-vowels magic mozilla mnist nomao avila ida2016 satimage --n_estimators 256 --n_prune 2 4 8 16 32 64 128 256 --nl 64 128 256 512 1024 --n_jobs 128 --xval 5 --base RandomForestClassifier

Important: This call uses 128 threads and requires a decent (something in the range of 64GB) amount of memory to work.

Exploring the results

After you run the experiments you can view the results with the plot_results.py script. We recommend to use an interactive Python environment for that such as Jupyter or VSCode with the ability to execute cells, but you should also be able to run this script as-is. This script is fairly well-commented, so please have a look at it for more detailed comments.

Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023