An open-access benchmark and toolbox for electricity price forecasting

Overview

epftoolbox

The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a set of tools that ensure reproducibility and establish research standards in electricity price forecasting research.

The library has been developed as part of the following article:

  • Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, Rafał Weron. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark". Applied Energy 2021; 293:116983. https://doi.org/10.1016/j.apenergy.2021.116983.

The library is distributed under the AGPL-3.0 License and it is built on top of scikit-learn, tensorflow, keras, hyperopt, statsmodels, numpy, and pandas.

Website: https://epftoolbox.readthedocs.io/en/latest/

Getting started

Download the repository and navigate into the folder

$ git clone https://github.com/jeslago/epftoolbox.git
$ cd epftoolbox

Install using pip

$ pip install .

Navigate to the examples folder and check the existing examples to get you started. The examples include several applications of the two state-of-the art forecasting model: a deep neural net and the LEAR model.

Documentation

The documentation can be found here. It provides an introduction to the library features and explains all functionalities in detail. Note that the documentation is still being built and some functionalities are still undocumented.

Features

The library provides easy access to a set of tools and benchmarks that can be used to evaluate and compare new methods for electricity price forecasting.

Forecasting models

The library includes two state-of-the-art forecasting models that can be automatically employed in any day-ahead market without the need of expert knowledge. At the moment, the library comprises two main models:

  • One based on a deep neural network
  • A second based on an autoregressive model with LASSO regulazariton (LEAR).

Evaluation metrics

Standard evaluation metrics for electricity price forecasting including:

  • Multiple scalar metrics like MAE, sMAPE, or MASE.
  • Two statistical tests (Diebold-Mariano and Giacomini-White) to evaluate statistical differents in forecasting performance.

Day-ahead market datasets

Easy access to five datasets comprising 6 years of data each and representing five different day-ahead electricity markets:

  • The datasets represents the EPEX-BE, EPEX-FR, EPEX-DE, NordPool, and PJM markets.
  • Each dataset contains historical prices plus two time series representing exogenous inputs.

Available forecasts

Readily available forecasts of the state-of-the-art methods so that researchers can evaluate new methods without re-estimating the models.

Citation

If you use the epftoolbox in a scientific publication, we would appreciate citations to the following paper:

  • Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, Rafał Weron. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark". Applied Energy 2021; 293:116983. https://doi.org/10.1016/j.apenergy.2021.116983.

Bibtex entry::

@article{epftoolbox,
title = {Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark},
journal = {Applied Energy},
volume = {293},
pages = {116983},
year = {2021},
doi = {https://doi.org/10.1016/j.apenergy.2021.116983},
author = {Jesus Lago and Grzegorz Marcjasz and Bart {De Schutter} and Rafał Weron}
}
Owner
Applied Scientist At Amazon
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022