Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Overview

Computational Optimal Transport for Machine Learning Reading Group

Over the last few years, optimal transport (OT) has quickly become a central topic in machine learning. OT is now routinely used in many areas of ML, ranging from the theoretical use of OT flow for controlling learning algorithms to the inference of high-dimensional cell trajectories in genomics. This reading group aims to keep participants up to date with the latest research happening in this area.

Logistics

For Winter 2022 term, meetings will be held weekly on Mondays from 14:00 to 15:00 EST via zoom (for now).

  • Zoom Link.

  • Password will be provided on slack before every meeting.

  • Meetings will be recorded by default. Recordings are available to Mila members at this link. Presenters can email [email protected] to opt out from being recorded.

  • Reading Group participates are expected to read each paper beforehand.

Schedule

Date Topic Presenters Slides
01/17/21 Introduction to Optimal Transport for Machine Learning Alex Tong
Ali Harakeh
Part 1
Part 2
01/24/21 Learning with minibatch Wasserstein : asymptotic and gradient properties Kilian Fatras --
01/31/21 -- -- --
02/7/21 -- -- --
02/14/21 -- -- --
02/21/21 -- -- --
02/28/21 -- -- --

Paper Presentation Instructions

Volunteer to Present

  • All participants are encouraged to volunteer to present at the reading group.

  • Volunteers can choose a paper from this list of suggested papers, or any other paper that is related to optimal transport in machine learning.

  • To volunteer, please send the paper title, link, and your preferred presentation date the Slack channel #volunteer-to-present or email [email protected].

Presentation Instructions

  • Presentations should be limited to 40 minutes at most. During the presentation, organizers will act as moderators and will read questions as they come up on the Zoom chat. The aim is to be done in 35-40 min to allow 15 min for general discussion.

  • Presentations should roughly adhere to the following outline:

    1. 5-10 minutes: Problem setup and position to literature.
    2. 10-15 minutes: Contributions/Novel technical points.
    3. 10-15 minutes: Weak points, open questions, and future directions.

Useful References

This is a list of useful references including code, text books, and presentations.

Code

  • POT: Python Optimal Transport: This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning. This library has the most efficient exact OT solvers.
  • GeomLoss: The GeomLoss library provides efficient GPU implementations for Kernel norms, Hausdorff divergences, and Debiased Sinkhorn divergences. This library has the most scalable duel OT solvers embedded within the Sinkhorn divergence computation.

Textbooks

@article{peyre2019computational,
  title={Computational optimal transport: With applications to data science},
  author={Peyr{\'e}, Gabriel and Cuturi, Marco and others},
  journal={Foundations and Trends{\textregistered} in Machine Learning},
  volume={11},
  number={5-6},
  pages={355--607},
  year={2019},
  publisher={Now Publishers, Inc.}}

Workshops and Presentations

Organizers

Modeled after the Causal Representation Learning Reading Group .

Owner
Ali Harakeh
Postdoctoral Research Fellow @mila-iqia
Ali Harakeh
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022