Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Overview

Auto-ViML

banner

Downloads Downloads Downloads standard-readme compliant Python Versions PyPI Version PyPI License

Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare)

NEW FEATURES in this version are:
1. SMOTE -> now we use SMOTE for imbalanced data. Just set Imbalanced_Flag = True in input below
2. Auto_NLP: It automatically detects Text variables and does NLP processing on those columns
3. Date Time Variables: It automatically detects date time variables and adds extra features
4. Feature Engineering: Now you can perform feature engineering with the available featuretools library.

To upgrade to the best, most stable and full-featured version (anything over > 0.1.600), do one of the following:
Use $ pip install autoviml --upgrade --ignore-installed
or pip install git+https://github.com/AutoViML/Auto_ViML.git

Table of Contents

Background

Read this Medium article to learn how to use Auto_ViML.

Auto_ViML was designed for building High Performance Interpretable Models with the fewest variables. The "V" in Auto_ViML stands for Variable because it tries multiple models with multiple features to find you the best performing model for your dataset. The "i" in Auto_ViML stands for "interpretable" since Auto_ViML selects the least number of features necessary to build a simpler, more interpretable model. In most cases, Auto_ViML builds models with 20-99% fewer features than a similar performing model with all included features (this is based on my trials. Your experience may vary).

Auto_ViML is every Data Scientist's model assistant that:

  1. Helps you with data cleaning: you can send in your entire dataframe as is and Auto_ViML will suggest changes to help with missing values, formatting variables, adding variables, etc. It loves dirty data. The dirtier the better!
  2. Assists you with variable classification: Auto_ViML classifies variables automatically. This is very helpful when you have hundreds if not thousands of variables since it can readily identify which of those are numeric vs categorical vs NLP text vs date-time variables and so on.
  3. Performs feature reduction automatically. When you have small data sets and you know your domain well, it is easy to perhaps do EDA and identify which variables are important. But when you have a very large data set with hundreds if not thousands of variables, selecting the best features from your model can mean the difference between a bloated and highly complex model or a simple model with the fewest and most information-rich features. Auto_ViML uses XGBoost repeatedly to perform feature selection. You must try it on your large data sets and compare!
  4. Produces model performance results as graphs automatically. Just set verbose = 1 (or) 2
  5. Handles text, date-time, structs (lists, dictionaries), numeric, boolean, factor and categorical variables all in one model using one straight process.
  6. Allows you to use the featuretools library to do Feature Engineering.
    See example below.
    Let's say you have a few numeric features in your data called "preds". You can 'add','subtract','multiply' or 'divide' these features among themselves using this module. You can optionally send an ID column in the data so that the index ordering is preserved.
    
    from autoviml.feature_engineering import feature_engineering
    print(df[preds].shape)
    dfmod = feature_engineering(df[preds],['add'],'ID')
    print(dfmod.shape)
Auto_ViML is built using scikit-learn, Nnumpy, pandas and matplotlib. It should run on most Python 3 Anaconda installations. You won't have to import any special libraries other than "XGBoost", "Imbalanced-Learn", "CatBoost", and "featuretools" library. We use "SHAP" library for interpretability.
But if you don't have these libraries, Auto_ViML will install those for you automatically.

Install

Prerequsites:

To clone Auto_ViML, it is better to create a new environment, and install the required dependencies:

To install from PyPi:

conda create -n <your_env_name> python=3.7 anaconda
conda activate <your_env_name> # ON WINDOWS: `source activate <your_env_name>`
pip install autoviml
or
pip install git+https://github.com/AutoViML/Auto_ViML.git

To install from source:

cd <AutoVIML_Destination>
git clone [email protected]:AutoViML/Auto_ViML.git
# or download and unzip https://github.com/AutoViML/Auto_ViML/archive/master.zip
conda create -n <your_env_name> python=3.7 anaconda
conda activate <your_env_name> # ON WINDOWS: `source activate <your_env_name>`
cd Auto_ViML
pip install -r requirements.txt

Usage

In the same directory, open a Jupyter Notebook and use this line to import the .py file:

from autoviml.Auto_ViML import Auto_ViML

Load a data set (any CSV or text file) into a Pandas dataframe and split it into Train and Test dataframes. If you don't have a test dataframe, you can simple assign the test variable below to '' (empty string):

model, features, trainm, testm = Auto_ViML(
    train,
    target,
    test,
    sample_submission,
    hyper_param="GS",
    feature_reduction=True,
    scoring_parameter="weighted-f1",
    KMeans_Featurizer=False,
    Boosting_Flag=False,
    Binning_Flag=False,
    Add_Poly=False,
    Stacking_Flag=False,
    Imbalanced_Flag=False,
    verbose=0,
)

Finally, it writes your submission file to disk in the current directory called mysubmission.csv. This submission file is ready for you to show it clients or submit it to competitions. If no submission file was given, but as long as you give it a test file name, it will create a submission file for you named mySubmission.csv. Auto_ViML works on any Multi-Class, Multi-Label Data Set. So you can have many target labels. You don't have to tell Auto_ViML whether it is a Regression or Classification problem.

Tips for using Auto_ViML:

  1. For Classification problems and imbalanced classes, choose scoring_parameter="balanced_accuracy". It works better.
  2. For Imbalanced Classes (<5% samples in rare class), choose "Imbalanced_Flag"=True. You can also set this flag to True for Regression problems where the target variable might have skewed distributions.
  3. For Multi-Label dataset, the target input target variable can be sent in as a list of variables.
  4. It is recommended that you first set Boosting_Flag=None to get a Linear model. Once you understand that, then you can try to set Boosting_Flag=False to get a Random Forest model. Finally, try Boosting_Flag=True to get an XGBoost model. This is the order that we recommend in order to use Auto_ViML.
  5. Finally try Boosting_Flag="CatBoost" to get a complex but high performing model.
  6. Binning_Flag=True improves a CatBoost model since it adds to the list of categorical vars in data
  7. KMeans_featurizer=True works well in NLP and CatBoost models since it creates cluster variables
  8. Add_Poly=3 improves certain models where there is date-time or categorical and numeric variables
  9. feature_reduction=True is the default and works best. But when you have <10 features in data, set it to False
  10. Do not use Stacking_Flag=True with Linear models since your results may not look great.
  11. Use Stacking_Flag=True only for complex models and as a last step with Boosting_Flag=True or CatBoost
  12. Always set hyper_param ="RS" as input since it runs faster than GridSearchCV and gives better results!
  13. KMeans_Featurizer=True does not work well for small data sets. Use it for data sets > 10,000 rows.
  14. Finally Auto_ViML is meant to be a baseline or challenger solution to your data set. So use it for making quick models that you can compare against or in Hackathons. It is not meant for production!

API

Arguments

  • train: could be a datapath+filename or a dataframe. It will detect which is which and load it.
  • test: could be a datapath+filename or a dataframe. If you don't have any, just leave it as "".
  • submission: must be a datapath+filename. If you don't have any, just leave it as empty string.
  • target: name of the target variable in the data set.
  • sep: if you have a spearator in the file such as "," or "\t" mention it here. Default is ",".
  • scoring_parameter: if you want your own scoring parameter such as "f1" give it here. If not, it will assume the appropriate scoring param for the problem and it will build the model.
  • hyper_param: Tuning options are GridSearch ('GS') and RandomizedSearch ('RS'). Default is 'RS'.
  • feature_reduction: Default = 'True' but it can be set to False if you don't want automatic feature_reduction since in Image data sets like digits and MNIST, you get better results when you don't reduce features automatically. You can always try both and see.
  • KMeans_Featurizer
    • True: Adds a cluster label to features based on KMeans. Use for Linear.
    • False (default) For Random Forests or XGB models, leave it False since it may overfit.
  • Boosting Flag: you have 4 possible choices (default is False):
    • None This will build a Linear Model
    • False This will build a Random Forest or Extra Trees model (also known as Bagging)
    • True This will build an XGBoost model
    • CatBoost This will build a CatBoost model (provided you have CatBoost installed)
  • Add_Poly: Default is 0 which means do-nothing. But it has three interesting settings:
    • 1 Add interaction variables only such as x1x2, x2x3,...x9*10 etc.
    • 2 Add Interactions and Squared variables such as x12, x22, etc.
    • 3 Adds both Interactions and Squared variables such as x1x2, x1**2,x2x3, x2**2, etc.
  • Stacking_Flag: Default is False. If set to True, it will add an additional feature which is derived from predictions of another model. This is used in some cases but may result in overfitting. So be careful turning this flag "on".
  • Binning_Flag: Default is False. It set to True, it will convert the top numeric variables into binned variables through a technique known as "Entropy" binning. This is very helpful for certain datasets (especially hard to build models).
  • Imbalanced_Flag: Default is False. If set to True, it will use SMOTE from Imbalanced-Learn to oversample the "Rare Class" in an imbalanced dataset and make the classes balanced (50-50 for example in a binary classification). This also works for Regression problems where you have highly skewed distributions in the target variable. Auto_ViML creates additional samples using SMOTE for Highly Imbalanced data.
  • verbose: This has 3 possible states:
    • 0 limited output. Great for running this silently and getting fast results.
    • 1 more charts. Great for knowing how results were and making changes to flags in input.
    • 2 lots of charts and output. Great for reproducing what Auto_ViML does on your own.

Return values

  • model: It will return your trained model
  • features: the fewest number of features in your model to make it perform well
  • train_modified: this is the modified train dataframe after removing and adding features
  • test_modified: this is the modified test dataframe with the same transformations as train

Maintainers

Contributing

See the contributing file!

PRs accepted.

License

Apache License 2.0 © 2020 Ram Seshadri

DISCLAIMER

This project is not an official Google project. It is not supported by Google and Google specifically disclaims all warranties as to its quality, merchantability, or fitness for a particular purpose.

Owner
AutoViz and Auto_ViML
Automated Machine Learning: Build Variant Interpretable Machine Learning models. Project Created by Ram Seshadri.
AutoViz and Auto_ViML
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022