Deep Networks with Recurrent Layer Aggregation

Related tags

Deep LearningRLANet
Overview

RLA-Net: Recurrent Layer Aggregation

Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation

This is an implementation of RLA-Net (accept by NeurIPS-2021, paper).

RLANet

Introduction

This paper introduces a concept of layer aggregation to describe how information from previous layers can be reused to better extract features at the current layer. While DenseNet is a typical example of the layer aggregation mechanism, its redundancy has been commonly criticized in the literature. This motivates us to propose a very light-weighted module, called recurrent layer aggregation (RLA), by making use of the sequential structure of layers in a deep CNN. Our RLA module is compatible with many mainstream deep CNNs, including ResNets, Xception and MobileNetV2, and its effectiveness is verified by our extensive experiments on image classification, object detection and instance segmentation tasks. Specifically, improvements can be uniformly observed on CIFAR, ImageNet and MS COCO datasets, and the corresponding RLA-Nets can surprisingly boost the performances by 2-3% on the object detection task. This evidences the power of our RLA module in helping main CNNs better learn structural information in images.

RLA module

RLA_module

Changelog

  • 2021/04/06 Upload RLA-ResNet model.
  • 2021/04/16 Upload RLA-MobileNetV2 (depthwise separable conv version) model.
  • 2021/09/29 Upload all the ablation study on ImageNet.
  • 2021/09/30 Upload mmdetection files.
  • 2021/10/01 Upload pretrained weights.

Installation

Requirements

Our environments

  • OS: Linux Red Hat 4.8.5
  • CUDA: 10.2
  • Toolkit: Python 3.8.5, PyTorch 1.7.0, torchvision 0.8.1
  • GPU: Tesla V100

Please refer to get_started.md for more details about installation.

Quick Start

Train with ResNet

- Use single node or multi node with multiple GPUs

Use multi-processing distributed training to launch N processes per node, which has N GPUs. This is the fastest way to use PyTorch for either single node or multi node data parallel training.

python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 {imagenet-folder with train and val folders}

- Specify single GPU or multiple GPUs

CUDA_VISIBLE_DEVICES={device_ids} python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 {imagenet-folder with train and val folders}

Testing

To evaluate the best model

python train.py -a {model_name} --b {batch_size} --multiprocessing-distributed --world-size 1 --rank 0 --resume {path to the best model} -e {imagenet-folder with train and val folders}

Visualizing the training result

To generate acc_plot, loss_plot

python eval_visual.py --log-dir {log_folder}

Train with MobileNet_v2

It is same with above ResNet replace train.py by train_light.py.

Compute the parameters and FLOPs

If you have install thop, you can paras_flops.py to compute the parameters and FLOPs of our models. The usage is below:

python paras_flops.py -a {model_name}

More examples are shown in examples.md.

MMDetection

After installing MMDetection (see get_started.md), then do the following steps:

  • put the file resnet_rla.py in the folder './mmdetection/mmdet/models/backbones/', and do not forget to import the model in the init.py file.
  • put the config files (e.g. faster_rcnn_r50rla_fpn.py) in the folder './mmdetection/configs/base/models/'
  • put the config files (e.g. faster_rcnn_r50rla_fpn_1x_coco.py) in the folder './mmdetection/configs/faster_rcnn'

Note that the config files of the latest version of MMDetection are a little different, please modify the config files according to the latest format.

Experiments

ImageNet

Model Param. FLOPs Top-1 err.(%) Top-5 err.(%) BaiduDrive(models) Extract code GoogleDrive
RLA-ResNet50 24.67M 4.17G 22.83 6.58 resnet50_rla_2283 5lf1 resnet50_rla_2283
RLA-ECANet50 24.67M 4.18G 22.15 6.11 ecanet50_rla_2215 xrfo ecanet50_rla_2215
RLA-ResNet101 42.92M 7.79G 21.48 5.80 resnet101_rla_2148 zrv5 resnet101_rla_2148
RLA-ECANet101 42.92M 7.80G 21.00 5.51 ecanet101_rla_2100 vhpy ecanet101_rla_2100
RLA-MobileNetV2 3.46M 351.8M 27.62 9.18 dsrla_mobilenetv2_k32_2762 g1pm dsrla_mobilenetv2_k32_2762
RLA-ECA-MobileNetV2 3.46M 352.4M 27.07 8.89 dsrla_mobilenetv2_k32_eca_2707 9orl dsrla_mobilenetv2_k32_eca_2707

COCO 2017

Model AP AP_50 AP_75 BaiduDrive(models) Extract code GoogleDrive
Fast_R-CNN_resnet50_rla 38.8 59.6 42.0 faster_rcnn_r50rla_fpn_1x_coco_388 q5c8 faster_rcnn_r50rla_fpn_1x_coco_388
Fast_R-CNN_ecanet50_rla 39.8 61.2 43.2 faster_rcnn_r50rlaeca_fpn_1x_coco_398 f5xs faster_rcnn_r50rlaeca_fpn_1x_coco_398
Fast_R-CNN_resnet101_rla 41.2 61.8 44.9 faster_rcnn_r101rla_fpn_1x_coco_412 0ri3 faster_rcnn_r101rla_fpn_1x_coco_412
Fast_R-CNN_ecanet101_rla 42.1 63.3 46.1 faster_rcnn_r101rlaeca_fpn_1x_coco_421 cpug faster_rcnn_r101rlaeca_fpn_1x_coco_421
RetinaNet_resnet50_rla 37.9 57.0 40.8 retinanet_r50rla_fpn_1x_coco_379 lahj retinanet_r50rla_fpn_1x_coco_379
RetinaNet_ecanet50_rla 39.0 58.7 41.7 retinanet_r50rlaeca_fpn_1x_coco_390 adyd retinanet_r50rlaeca_fpn_1x_coco_390
RetinaNet_resnet101_rla 40.3 59.8 43.5 retinanet_r101rla_fpn_1x_coco_403 p8y0 retinanet_r101rla_fpn_1x_coco_403
RetinaNet_ecanet101_rla 41.5 61.6 44.4 retinanet_r101rlaeca_fpn_1x_coco_415 hdqx retinanet_r101rlaeca_fpn_1x_coco_415
Mask_R-CNN_resnet50_rla 39.5 60.1 43.3 mask_rcnn_r50rla_fpn_1x_coco_395 j1x6 mask_rcnn_r50rla_fpn_1x_coco_395
Mask_R-CNN_ecanet50_rla 40.6 61.8 44.0 mask_rcnn_r50rlaeca_fpn_1x_coco_406 c08r mask_rcnn_r50rlaeca_fpn_1x_coco_406
Mask_R-CNN_resnet101_rla 41.8 62.3 46.2 mask_rcnn_r101rla_fpn_1x_coco_418 8bsn mask_rcnn_r101rla_fpn_1x_coco_418
Mask_R-CNN_ecanet101_rla 42.9 63.6 46.9 mask_rcnn_r101rlaeca_fpn_1x_coco_429 3kmz mask_rcnn_r101rlaeca_fpn_1x_coco_429

Citation

@misc{zhao2021recurrence,
      title={Recurrence along Depth: Deep Convolutional Neural Networks with Recurrent Layer Aggregation}, 
      author={Jingyu Zhao and Yanwen Fang and Guodong Li},
      year={2021},
      eprint={2110.11852},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Questions

Please contact '[email protected]' or '[email protected]'.

Owner
Joy Fang
Joy Fang
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022