PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

Related tags

Deep Learningfiery
Overview

FIERY

This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in:

FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras

Anthony Hu, Zak Murez, Nikhil Mohan, Sofía Dudas, Jeffrey Hawke, ‪Vijay Badrinarayanan, Roberto Cipolla and Alex Kendall

preprint (2021)
Blog post

FIERY future prediction
Multimodal future predictions by our bird’s-eye view network.
Top two rows: RGB camera inputs. The predicted future trajectories and segmentations are projected to the ground plane in the images.
Bottom row: future instance prediction in bird’s-eye view in a 100m×100m capture size around the ego-vehicle, which is indicated by a black rectangle in the center.

If you find our work useful, please consider citing:

@inproceedings{fiery2021,
  title     = {{FIERY}: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras},
  author    = {Anthony Hu and Zak Murez and Nikhil Mohan and Sofía Dudas and 
               Jeffrey Hawke and Vijay Badrinarayanan and Roberto Cipolla and Alex Kendall},
  booktitle = {arXiv preprint},
  year = {2021}
}

Setup

  • Create the conda environment by running conda env create.

🏄 Prediction

🔥 Pre-trained models

All the configs are in the folder fiery/configs

Config Dataset Past context Future horizon BEV size IoU VPQ
baseline.yml NuScenes 1.0s 2.0s 100mx100m (50cm res.) 37.0 29.5
lyft/baseline.yml Lyft 0.8s 2.0s 100mx100m (50cm res.) 36.6 29.5
literature/pon_setting.yml NuScenes 0.0s 0.0s 100mx50m (25cm res.) 39.9 -
literature/lift_splat_setting.yml NuScenes 0.0s 0.0s 100mx100m (50cm res.) 36.7 -
literature/fishing_setting.yml NuScenes 1.0s 2.0s 32.0mx19.2m (10cm res.) 58.5 -

🏊 Training

To train the model from scratch on NuScenes:

  • Run python train.py --config fiery/configs/baseline.yml DATASET.DATAROOT ${NUSCENES_DATAROOT}

🙌 Credits

Big thanks to Piotr Sokólski (@pyetras) for the panoptic metric implementation, and to Hannes Liik (@hannesliik) for the awesome future trajectory visualisation on the ground plane.

Comments
  • loss < 0

    loss < 0

    Hi, thanks for your great work. I have a question about loss. When i trained model for my data, the loss < 0 at epoch_0, is this normal? Config: baseline.yaml in the project image

    opened by YiJiangYue 6
  • All losses become NaN after about 1 epoch of training

    All losses become NaN after about 1 epoch of training

    Hi,

    Thank you for sharing this great work!

    When I ran the training code, I got NaN for all losses after about 1 epoch of training. This problem is reproduced whenever I run the training code. (I have tested it three times.)

    I followed the same environment setting with anaconda, and also used the same hyper-parameters. (The only difference is that our PyTorch version is 1.7.1 and yours is 1.7.0, and all other modules are the same as yours.)

    Please share your idea about this problem, if you have any. Thanks!

    opened by jwookyoo 6
  • Question about the projection_to_birds_eye_view function

    Question about the projection_to_birds_eye_view function

    Congratulations on your great work!

    I want to follow your work for future research and I have some questions about your released code below:

    In the fiery.py file of your code, can you provide more details about the get_geometry function and the projection_to_birds_eye_view function? I'm so confused about how they actually work, especially, the code shown in the red box below. 112a26f400a5c24af541a6423977362

    Thank you very much. Looking forward to your reply!

    opened by taylover-pei 5
  • AttributeError: 'FigureCanvasTkAgg' object has no attribute 'renderer'

    AttributeError: 'FigureCanvasTkAgg' object has no attribute 'renderer'

    Hello, recently I found your great work and I want to try the "Visualisation" part locally to check the results, but after I run the command of python visualise.py --checkpoint ${CHECKPOINT_PATH} my terminal pop out an error like the following: image

    I try to solve it by searching on google but it does not help, could you help me if you know how to solve it. Many thanks.

    opened by Ianpengg 3
  • May I know where is the checkpoint getting saved?

    May I know where is the checkpoint getting saved?

    I dont see anywhere that the checkpoint is getting saved and while resuming the training, I am getting an error that "size mismatch for model.temporal_model.model.1.aggregation.0.conv.weight"

    opened by pranavi77 2
  • The result of fiery static

    The result of fiery static

    If I want to get the result of Fiery Static of Setting2 in Table I of your paper, should I use the config in "configs/single_timeframe.yml"? When I train the network using this config file from scratch, the IOU is 39.2 when I use the "evaluate.py". However, in the paper, the result is 35.8. Is there another parameter needed to be modified, when I want the network to be one frame as input and the segmentation result of the present frame as output?

    opened by DFLyan 2
  • Question about panoptic_metrics function

    Question about panoptic_metrics function

    Hi,

    Would you be able to explain how the panoptic_metrics function works? (Code linked here: https://github.com/wayveai/fiery/blob/master/fiery/metrics.py#L137) Especially, I wonder why 'void' is included for 'combine_mask', and why 'background' should be changed from 0 to 1.

    Also, It is hard to understand the code under the comment "# hack for bincounting 2 arrays together". (Code linked here: https://github.com/wayveai/fiery/blob/master/fiery/metrics.py#L168)

    Thank you!

    opened by jwookyoo 2
  • Is future_egopose necessary for inference?

    Is future_egopose necessary for inference?

    Thanks for your great work. I have a little question about future ego pose during inference? I may find a little tricky because flow prediction is a module before motion planning. In real cases, the flow prediction module has no chance of getting future ego pose. But the code may show future ego pose is irreplacable in inference. When I turn to None, the inference doesn't work.

    opened by synsin0 1
  • clarification evaluation

    clarification evaluation

    Hello and many thanks for your work and sharing your code.

    I have a question regarding the way you compute your IoU metric and how it compares against Lift-splat.

    You use stat_scores_multiple_classes from PLmetrics to compute the iou. Correct me if I am wrong, but by default the threshold of this method is 0.5

    On the other hand, in get_batch_iou of LFS they use a threshold of 0: pred = (preds > 0) https://github.com/nv-tlabs/lift-splat-shoot/blob/master/src/tools.py

    Wouldn't this have an impact on the evaluation results ,and thus, on how you compare to them ?

    opened by F-Barto 1
  • Question on deleting unused layers and self.downsample

    Question on deleting unused layers and self.downsample

    Hi, I couldn't understand how the self.downsample parameter was set (why 8 and 16 and how it affects upsampling_in_channels) and why delete_unused_layers is required in the encoder model. I tried to search the efficientnet-pytorch implementation and couldn't find any reference for this operation. Could you explain briefly why this is required? Thank you!

    opened by benhgm 1
  • question about instance_flow

    question about instance_flow

    Thanks for your excellent work! I have some questions about instance_flow. warped_instance_seg = {} # t0,f01-->t1; t1,f12-->t2; t2,f23-->t3 # t1,f10-->t0; t2,f21-->t1 for t in range(1, seq_len): warped_inst_t = warp_features(instance_img[t].unsqueeze(0).unsqueeze(1).float(), # 1, 1, 200, 200 future_egomotion_inv[t - 1].unsqueeze(0), mode='nearest', spatial_extent=spatial_extent) warped_instance_seg[t] = warped_inst_t[0, 0] In your paper, "Finally, we obtain feature flow labels by comparing the position of the instance centers of gravity between two consecutive timesteps".I think the code should convert t to t-1, not t-1 to t. How can it get the feature flow? I'm really confuesd about it. I'm looking forward your replying.

    opened by qfwysw 1
  • Bad results when evaluating pretrained checkpoints

    Bad results when evaluating pretrained checkpoints

    Hi. Thanks for your great work. I followed your instructions in README.md to extract nuscenes dataset. I ran evaluate.py with official pretrained checkpoint (https://github.com/wayveai/fiery/releases/download/v1.0/fiery.ckpt) but got the output as follows: iou 53.5 & 28.6 pq 39.8 & 18.0 sq 69.4 & 66.3 rq 57.4 & 27.1 Is there something wrong? It seems to be much lower than the results you got.

    opened by huangzhengxiang 1
  • Dear author,the total loss value <0 ,is it normal?

    Dear author,the total loss value <0 ,is it normal?

    Dear author, I just run the code without no change, during the training ,I got the total sum loss with the value <0 .

    It looks so weird. Is that caused by the setting of the "uncertainty" ? Is that normal? Really thanks.

    opened by emilyemliyM 0
  • Pytorch Lightning stuck the computer and finally killed

    Pytorch Lightning stuck the computer and finally killed

    Thanks for your great work. I'd like to reproduce the training process, but I encountered an error. That is when I use multi-GPU distributed training process, the logging information seems normal, but afterwards the remote server stuck and connection reset and finally the process is killed. My remote server is an independent machine with 4xRTX3090. Is there any issues with the pytorch lightning distributed training that may cause my failure?

    opened by synsin0 1
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022