PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

Related tags

Deep Learningfiery
Overview

FIERY

This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in:

FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras

Anthony Hu, Zak Murez, Nikhil Mohan, Sofía Dudas, Jeffrey Hawke, ‪Vijay Badrinarayanan, Roberto Cipolla and Alex Kendall

preprint (2021)
Blog post

FIERY future prediction
Multimodal future predictions by our bird’s-eye view network.
Top two rows: RGB camera inputs. The predicted future trajectories and segmentations are projected to the ground plane in the images.
Bottom row: future instance prediction in bird’s-eye view in a 100m×100m capture size around the ego-vehicle, which is indicated by a black rectangle in the center.

If you find our work useful, please consider citing:

@inproceedings{fiery2021,
  title     = {{FIERY}: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras},
  author    = {Anthony Hu and Zak Murez and Nikhil Mohan and Sofía Dudas and 
               Jeffrey Hawke and Vijay Badrinarayanan and Roberto Cipolla and Alex Kendall},
  booktitle = {arXiv preprint},
  year = {2021}
}

Setup

  • Create the conda environment by running conda env create.

🏄 Prediction

🔥 Pre-trained models

All the configs are in the folder fiery/configs

Config Dataset Past context Future horizon BEV size IoU VPQ
baseline.yml NuScenes 1.0s 2.0s 100mx100m (50cm res.) 37.0 29.5
lyft/baseline.yml Lyft 0.8s 2.0s 100mx100m (50cm res.) 36.6 29.5
literature/pon_setting.yml NuScenes 0.0s 0.0s 100mx50m (25cm res.) 39.9 -
literature/lift_splat_setting.yml NuScenes 0.0s 0.0s 100mx100m (50cm res.) 36.7 -
literature/fishing_setting.yml NuScenes 1.0s 2.0s 32.0mx19.2m (10cm res.) 58.5 -

🏊 Training

To train the model from scratch on NuScenes:

  • Run python train.py --config fiery/configs/baseline.yml DATASET.DATAROOT ${NUSCENES_DATAROOT}

🙌 Credits

Big thanks to Piotr Sokólski (@pyetras) for the panoptic metric implementation, and to Hannes Liik (@hannesliik) for the awesome future trajectory visualisation on the ground plane.

Comments
  • loss < 0

    loss < 0

    Hi, thanks for your great work. I have a question about loss. When i trained model for my data, the loss < 0 at epoch_0, is this normal? Config: baseline.yaml in the project image

    opened by YiJiangYue 6
  • All losses become NaN after about 1 epoch of training

    All losses become NaN after about 1 epoch of training

    Hi,

    Thank you for sharing this great work!

    When I ran the training code, I got NaN for all losses after about 1 epoch of training. This problem is reproduced whenever I run the training code. (I have tested it three times.)

    I followed the same environment setting with anaconda, and also used the same hyper-parameters. (The only difference is that our PyTorch version is 1.7.1 and yours is 1.7.0, and all other modules are the same as yours.)

    Please share your idea about this problem, if you have any. Thanks!

    opened by jwookyoo 6
  • Question about the projection_to_birds_eye_view function

    Question about the projection_to_birds_eye_view function

    Congratulations on your great work!

    I want to follow your work for future research and I have some questions about your released code below:

    In the fiery.py file of your code, can you provide more details about the get_geometry function and the projection_to_birds_eye_view function? I'm so confused about how they actually work, especially, the code shown in the red box below. 112a26f400a5c24af541a6423977362

    Thank you very much. Looking forward to your reply!

    opened by taylover-pei 5
  • AttributeError: 'FigureCanvasTkAgg' object has no attribute 'renderer'

    AttributeError: 'FigureCanvasTkAgg' object has no attribute 'renderer'

    Hello, recently I found your great work and I want to try the "Visualisation" part locally to check the results, but after I run the command of python visualise.py --checkpoint ${CHECKPOINT_PATH} my terminal pop out an error like the following: image

    I try to solve it by searching on google but it does not help, could you help me if you know how to solve it. Many thanks.

    opened by Ianpengg 3
  • May I know where is the checkpoint getting saved?

    May I know where is the checkpoint getting saved?

    I dont see anywhere that the checkpoint is getting saved and while resuming the training, I am getting an error that "size mismatch for model.temporal_model.model.1.aggregation.0.conv.weight"

    opened by pranavi77 2
  • The result of fiery static

    The result of fiery static

    If I want to get the result of Fiery Static of Setting2 in Table I of your paper, should I use the config in "configs/single_timeframe.yml"? When I train the network using this config file from scratch, the IOU is 39.2 when I use the "evaluate.py". However, in the paper, the result is 35.8. Is there another parameter needed to be modified, when I want the network to be one frame as input and the segmentation result of the present frame as output?

    opened by DFLyan 2
  • Question about panoptic_metrics function

    Question about panoptic_metrics function

    Hi,

    Would you be able to explain how the panoptic_metrics function works? (Code linked here: https://github.com/wayveai/fiery/blob/master/fiery/metrics.py#L137) Especially, I wonder why 'void' is included for 'combine_mask', and why 'background' should be changed from 0 to 1.

    Also, It is hard to understand the code under the comment "# hack for bincounting 2 arrays together". (Code linked here: https://github.com/wayveai/fiery/blob/master/fiery/metrics.py#L168)

    Thank you!

    opened by jwookyoo 2
  • Is future_egopose necessary for inference?

    Is future_egopose necessary for inference?

    Thanks for your great work. I have a little question about future ego pose during inference? I may find a little tricky because flow prediction is a module before motion planning. In real cases, the flow prediction module has no chance of getting future ego pose. But the code may show future ego pose is irreplacable in inference. When I turn to None, the inference doesn't work.

    opened by synsin0 1
  • clarification evaluation

    clarification evaluation

    Hello and many thanks for your work and sharing your code.

    I have a question regarding the way you compute your IoU metric and how it compares against Lift-splat.

    You use stat_scores_multiple_classes from PLmetrics to compute the iou. Correct me if I am wrong, but by default the threshold of this method is 0.5

    On the other hand, in get_batch_iou of LFS they use a threshold of 0: pred = (preds > 0) https://github.com/nv-tlabs/lift-splat-shoot/blob/master/src/tools.py

    Wouldn't this have an impact on the evaluation results ,and thus, on how you compare to them ?

    opened by F-Barto 1
  • Question on deleting unused layers and self.downsample

    Question on deleting unused layers and self.downsample

    Hi, I couldn't understand how the self.downsample parameter was set (why 8 and 16 and how it affects upsampling_in_channels) and why delete_unused_layers is required in the encoder model. I tried to search the efficientnet-pytorch implementation and couldn't find any reference for this operation. Could you explain briefly why this is required? Thank you!

    opened by benhgm 1
  • question about instance_flow

    question about instance_flow

    Thanks for your excellent work! I have some questions about instance_flow. warped_instance_seg = {} # t0,f01-->t1; t1,f12-->t2; t2,f23-->t3 # t1,f10-->t0; t2,f21-->t1 for t in range(1, seq_len): warped_inst_t = warp_features(instance_img[t].unsqueeze(0).unsqueeze(1).float(), # 1, 1, 200, 200 future_egomotion_inv[t - 1].unsqueeze(0), mode='nearest', spatial_extent=spatial_extent) warped_instance_seg[t] = warped_inst_t[0, 0] In your paper, "Finally, we obtain feature flow labels by comparing the position of the instance centers of gravity between two consecutive timesteps".I think the code should convert t to t-1, not t-1 to t. How can it get the feature flow? I'm really confuesd about it. I'm looking forward your replying.

    opened by qfwysw 1
  • Bad results when evaluating pretrained checkpoints

    Bad results when evaluating pretrained checkpoints

    Hi. Thanks for your great work. I followed your instructions in README.md to extract nuscenes dataset. I ran evaluate.py with official pretrained checkpoint (https://github.com/wayveai/fiery/releases/download/v1.0/fiery.ckpt) but got the output as follows: iou 53.5 & 28.6 pq 39.8 & 18.0 sq 69.4 & 66.3 rq 57.4 & 27.1 Is there something wrong? It seems to be much lower than the results you got.

    opened by huangzhengxiang 1
  • Dear author,the total loss value <0 ,is it normal?

    Dear author,the total loss value <0 ,is it normal?

    Dear author, I just run the code without no change, during the training ,I got the total sum loss with the value <0 .

    It looks so weird. Is that caused by the setting of the "uncertainty" ? Is that normal? Really thanks.

    opened by emilyemliyM 0
  • Pytorch Lightning stuck the computer and finally killed

    Pytorch Lightning stuck the computer and finally killed

    Thanks for your great work. I'd like to reproduce the training process, but I encountered an error. That is when I use multi-GPU distributed training process, the logging information seems normal, but afterwards the remote server stuck and connection reset and finally the process is killed. My remote server is an independent machine with 4xRTX3090. Is there any issues with the pytorch lightning distributed training that may cause my failure?

    opened by synsin0 1
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f

Ruolin Ye 80 Nov 28, 2022
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022