Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Overview

License CC BY-NC-SA 4.0 Python 3.6 Language grade: Python

Joint Discriminative and Generative Learning for Person Re-identification

[Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp]

Joint Discriminative and Generative Learning for Person Re-identification, CVPR 2019 (Oral)
Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng, Yi Yang, Jan Kautz

Table of contents

News

  • 02/18/2021: We release DG-Net++: the extention of DG-Net for unsupervised cross-domain re-id.
  • 08/24/2019: We add the direct transfer learning results of DG-Net here.
  • 08/01/2019: We add the support of multi-GPU training: python train.py --config configs/latest.yaml --gpu_ids 0,1.

Features

We have supported:

  • Multi-GPU training (fp32)
  • APEX to save GPU memory (fp16/fp32)
  • Multi-query evaluation
  • Random erasing
  • Visualize training curves
  • Generate all figures in the paper

Prerequisites

  • Python 3.6
  • GPU memory >= 15G (fp32)
  • GPU memory >= 10G (fp16/fp32)
  • NumPy
  • PyTorch 1.0+
  • [Optional] APEX (fp16/fp32)

Getting Started

Installation

  • Install PyTorch
  • Install torchvision from the source:
git clone https://github.com/pytorch/vision
cd vision
python setup.py install
  • [Optional] You may skip it. Install APEX from the source:
git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext
  • Clone this repo:
git clone https://github.com/NVlabs/DG-Net.git
cd DG-Net/

Our code is tested on PyTorch 1.0.0+ and torchvision 0.2.1+ .

Dataset Preparation

Download the dataset Market-1501 [Google Drive] [Baidu Disk]

Preparation: put the images with the same id in one folder. You may use

python prepare-market.py          # for Market-1501

Note to modify the dataset path to your own path.

Testing

Download the trained model

We provide our trained model. You may download it from Google Drive (or Baidu Disk password: rqvf). You may download and move it to the outputs.

├── outputs/
│   ├── E0.5new_reid0.5_w30000
├── models
│   ├── best/                   

Person re-id evaluation

  • Supervised learning
Market-1501 DukeMTMC-reID MSMT17 CUHK03-NP
[email protected] 94.8% 86.6% 77.2% 65.6%
mAP 86.0% 74.8% 52.3% 61.1%
  • Direct transfer learning
    To verify the generalizability of DG-Net, we train the model on dataset A and directly test the model on dataset B (with no adaptation). We denote the direct transfer learning protocol as A→B.
Market→Duke Duke→Market Market→MSMT MSMT→Market Duke→MSMT MSMT→Duke
[email protected] 42.62% 56.12% 17.11% 61.76% 20.59% 61.89%
[email protected] 58.57% 72.18% 26.66% 77.67% 31.67% 75.81%
[email protected] 64.63% 78.12% 31.62% 83.25% 37.04% 80.34%
mAP 24.25% 26.83% 5.41% 33.62% 6.35% 40.69%

Image generation evaluation

Please check the README.md in the ./visual_tools.

You may use the ./visual_tools/test_folder.py to generate lots of images and then do the evaluation. The only thing you need to modify is the data path in SSIM and FID.

Training

Train a teacher model

You may directly download our trained teacher model from Google Drive (or Baidu Disk password: rqvf). If you want to have it trained by yourself, please check the person re-id baseline repository to train a teacher model, then copy and put it in the ./models.

├── models/
│   ├── best/                   /* teacher model for Market-1501
│       ├── net_last.pth        /* model file
│       ├── ...

Train DG-Net

  1. Setup the yaml file. Check out configs/latest.yaml. Change the data_root field to the path of your prepared folder-based dataset, e.g. ../Market-1501/pytorch.

  2. Start training

python train.py --config configs/latest.yaml

Or train with low precision (fp16)

python train.py --config configs/latest-fp16.yaml

Intermediate image outputs and model binary files are saved in outputs/latest.

  1. Check the loss log
 tensorboard --logdir logs/latest

DG-Market

We provide our generated images and make a large-scale synthetic dataset called DG-Market. This dataset is generated by our DG-Net and consists of 128,307 images (613MB), about 10 times larger than the training set of original Market-1501 (even much more can be generated with DG-Net). It can be used as a source of unlabeled training dataset for semi-supervised learning. You may download the dataset from Google Drive (or Baidu Disk password: qxyh).

DG-Market Market-1501 (training)
#identity - 751
#images 128,307 12,936

Tips

Note the format of camera id and number of cameras. For some datasets (e.g., MSMT17), there are more than 10 cameras. You need to modify the preparation and evaluation code to read the double-digit camera id. For some vehicle re-id datasets (e.g., VeRi) having different naming rules, you also need to modify the preparation and evaluation code.

Citation

Please cite this paper if it helps your research:

@inproceedings{zheng2019joint,
  title={Joint discriminative and generative learning for person re-identification},
  author={Zheng, Zhedong and Yang, Xiaodong and Yu, Zhiding and Zheng, Liang and Yang, Yi and Kautz, Jan},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
}

Related Work

Other GAN-based methods compared in the paper include LSGAN, FDGAN and PG2GAN. We forked the code and made some changes for evaluatation, thank the authors for their great work. We would also like to thank to the great projects in person re-id baseline, MUNIT and DRIT.

License

Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International). The code is released for academic research use only. For commercial use, please contact [email protected].

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022